您好,欢迎访问北京市农林科学院 机构知识库!

Estimating crop leaf area index and chlorophyll content using a deep learning-based hyperspectral analysis method

文献类型: 外文期刊

作者: Yue, Jibo 1 ; Wang, Jian 1 ; Zhang, Zhaoying 2 ; Li, Changchun 3 ; Yang, Hao 4 ; Feng, Haikuan 4 ; Guo, Wei 1 ;

作者机构: 1.Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Peoples R China

2.Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210023, Peoples R China

3.Henan Polytech Univ, Inst Quantitat Remote Sensing & Smart Agr, Jiaozuo 454000, Peoples R China

4.Minist Agr & Rural Affairs, Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China

5.Nanjing Agr Univ, Coll Agr, Nanjing 210095, Jiangsu, Peoples R China

关键词: Hyperspectral; Convolutional neural network; RTM; Transfer learning

期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.9; 五年影响因子:9.3 )

ISSN: 0168-1699

年卷期: 2024 年 227 卷

页码:

收录情况: SCI

摘要: The crop leaf area index (LAI) and leaf chlorophyll content (LCC) are essential indicators that reflect crop growth status, and their accurate estimation is helpful for agricultural management decision-making. Traditional hyperspectral estimation methods for crop LAI and LCC from canopy spectra face challenges due to intricate soil backgrounds, canopy structural environments, and varying observational conditions. This paper proposes an LAI and LCC estimation method based on hyperspectral remote sensing, a radiative transfer model (RTM), and a leaf area index and leaf chlorophyll content deep learning network (LACNet). The LACNet architecture was developed utilizing deep and shallow feature fusion, blocks, and a hyperspectral-to-image transform (HIT) concept, aiming to improve LAI and LCC estimation. We used a field-based spectrometer to collect a dataset comprising 1,234 spectral measurements across five crop types: wheat, maize, potato, rice, and soybean. We used properties optique spectrales des feuilles and scattering by arbitrarily inclined leaves (PROSAIL) to generate a simulated spectra dataset (n = 145,152) representing complex farmland conditions for the five abovementioned crops, considering the variations in soil type, soil moisture, LAI, LCC, etc. The LACNet deep learning model sequentially uses RTM simulated and field-based spectra datasets for training, achieving higher universality and validation accuracy. We also analyzed the LACNet model's interpretability for LAI and LCC estimation based on the gradient-weighted class activation mapping theory. From our research, we drew the following conclusions: (1) The shallow network features are sensitive to the LAI and LCC in the entire visible band, consistent with our correlation analysis results, while the deep network sensitive areas are mainly concentrated in the RE + VIS and RE + NIR regions of the HIT images. (2) The LACNet deep learning model (LAI: coefficient of determination (R2) = 0.770, root mean square error (RMSE) = 0.968 m2/m2; LCC: R2 = 0.765, RMSE = 4.547 Dualex readings) can provide higher crop LAI and LCC estimation accuracy than widely used spectral feature and statistical regression methods (LCC: R2 = 0.491-0.620, RMSE = 5.804-6.691 Dualex readings; LAI: R2 = 0.476-0.716, RMSE = 1.089-1.482 m2/m2). The results of this study highlight the potential of the LACNet deep learning model as an effective and robust tool for accurately estimating crop LAI and LCC.

  • 相关文献
作者其他论文 更多>>