Key Region Extraction and Body Dimension Measurement of Beef Cattle Using 3D Point Clouds
文献类型: 外文期刊
作者: Li, Jiawei 1 ; Li, Qifeng 2 ; Ma, Weihong 2 ; Xue, Xianglong 2 ; Zhao, Chunjiang 2 ; Tulpan, Dan 4 ; Yang, Simon X. 5 ;
作者机构: 1.China Agr Univ, Coll Informat & Elect Engn, Beijing 100091, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Res Ctr Informat Technol, Beijing 100097, Peoples R China
4.Univ Guelph, Sch Comp Sci, Guelph, ON N1G 2W1, Canada
5.Univ Guelph, Sch Engn, Adv Robot & Intelligent Syst Arts Lab, Guelph, ON N1G 2W1, Canada
关键词: beef cattle point cloud; region segmentation; body dimension calculation; slice feature; non-contact measurement
期刊名称:AGRICULTURE-BASEL ( 影响因子:3.408; 五年影响因子:3.459 )
ISSN:
年卷期: 2022 年 12 卷 7 期
页码:
收录情况: SCI
摘要: Body dimensions are key indicators for the beef cattle fattening and breeding process. On-animal measurement is relatively inefficient, and can induce severe stress responses among beef cattle and pose a risk for operators, thereby impacting the cattle's growth rate and wellbeing. To address the above issues, a highly efficient and automatic method was developed to measure beef cattle's body dimensions, including the oblique length, height, width, abdominal girth, and chest girth, based on the reconstructed three-dimensional point cloud data. The horizontal continuous slice sequence of the complete point clouds was first extracted, and the central point of the beef cattle leg region was determined from the span distribution of the point cloud clusters in the targeted slices. Subsequently, the boundary of the beef cattle leg region was identified by the "five-point clustering gradient boundary recognition algorithm" and was then calibrated, followed by the accurate segmentation of the corresponding region. The key regions for body dimension data calculation were further determined by the proposed algorithm, which forms the basis of the scientific calculation of key body dimensions. The influence of different postures of beef cattle on the measurement results was also preliminarily discussed. The results showed that the errors of calculated body dimensions, i.e., the oblique length, height, width, abdominal girth, and chest girth, were 2.3%, 2.8%, 1.6%, 2.8%, and 2.6%, respectively. In the present work, the beef cattle body dimensions could be effectively measured based on the 3D regional features of the point cloud data. The proposed algorithm shows a degree of generalization and robustness that is not affected by different postures of beef cattle. This automatic method can be effectively used to collect reliable phenotype data during the fattening of beef cattle and can be directly integrated into the breeding process.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
DASNet a dual branch multi level attention sheep counting network
作者:Chen, Yini;Gao, Ronghua;Li, Qifeng;Wang, Rong;Ding, Luyu;Li, Xuwen;Chen, Yini;Zhao, Hongtao;Li, Xuwen
关键词:
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding



