文献类型: 外文期刊
作者: Li, Tao 1 ; Yu, Jinpeng 2 ; Qiu, Quan 4 ; Zhao, Chunjiang 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Intelligent Equipment Res Ctr, Beijing 100097, Peoples R China
2.Qingdao Univ, Sch Automat, Qingdao 266071, Peoples R China
3.Shandong Key Lab Ind Control Technol, Qingdao 266071, Peoples R China
4.Beijing Inst Petrochem Technol, Acad Artificial Intelligence, Beijing 102617, Peoples R China
关键词: Depth camera; object detection; robotics; tracking control; uncalibrated system; visual servoing (VS)
期刊名称:IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS ( 影响因子:7.7; 五年影响因子:8.6 )
ISSN: 0278-0046
年卷期: 2023 年 70 卷 3 期
页码:
收录情况: SCI
摘要: Visual servoing (VS) control has seen wide adoption in harvesting robots. However, parameter calibration is cumbersome, which makes the use of VS robotic systems inconvenient. Besides, dynamic fruits usually lead to a degeneration of control while tracking. To overcome the drawbacks, we present a new image-based uncalibrated visual servoing (IBUVS) control approach, consisting of a hybrid visual configuration and an adaptive tracking controller, referred to as hybrid-IBUVS. Specifically, our hybrid-IBUVS employs an eye-in-hand camera and a fixed red-green-blue-depth camera to construct a hybrid VS system, basing on multiobject detection and edge-computing technologies. Meanwhile, we also propose adaptive laws to online estimate the uncalibrated parameters of the cameras and robot dynamics. Furthermore, our hybrid-IBUVS uses an adaptive tracking controller to guarantee the harvesting robot to track a predefined trajectory to approach a fruit target. By Lyapunov stability theory, asymptotic convergence of the proposed control scheme is rigorously proven. Experimental results demonstrate the effectiveness of the proposed scheme. All shown results supported the research claims.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
An Original UV Adhesive Watermelon Grafting Method, the Grafting Device, and Experimental Verification
作者:Zhang, Xin;Kong, Linghao;Lu, Hanwei;Zhang, Xin;Feng, Qingchun;Li, Tao;Jiang, Kai;Zhang, Qian
关键词:watermelon grafting; UV adhesive; fluent; VOF-DPM numerical simulation; grafting device; test
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight
-
An ultra-lightweight method for individual identification of cow-back pattern images in an open image set
作者:Wang, Rong;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Wang, Rong;Zhao, Chunjiang;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Ru, Lin
关键词:Cow-back pattern; Cow recognition; LightCowsNet; Open image set; Deep learning