A bi-layer model for nondestructive prediction of soluble solids content in apple based on reflectance spectra and peel pigments
文献类型: 外文期刊
作者: Tian, Xi 1 ; Li, Jiangbo 1 ; Wang, Qingyan 1 ; Fan, Shuxiang 1 ; Huang, Wenqian 1 ;
作者机构: 1.Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China; Natl Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China; Minist Agr, Key Lab Agriinformat, Beijing 100097, Peoples R China; Beijing Key Lab Intelligent Equipment Technol Agr, Beijing 100097, Peoples R China
关键词: Hyperspectral image;Effective wavelength;SSC;Pigment;Bi-layer model;Apple
期刊名称:FOOD CHEMISTRY ( 影响因子:7.514; 五年影响因子:7.516 )
ISSN: 0308-8146
年卷期: 2018 年 239 卷
页码:
收录情况: SCI
摘要: Hyperspectral imaging technology was used to investigate the effect of various peel colors on soluble solids content (SSC) prediction model and build a SSC model insensitive to the color distribution of apple peel. The SSC and peel pigments were measured, effective wavelengths (EWs) of SSC and pigments were selected from the acquired hyperspectral images of the intact and peeled apple samples, respectively. The effect of pigments on the SSC prediction was studied and optimal SSC EWs were selected from the peel-flesh layers spectra after removing the chlorophyll and anthocyanin EWs. Then, the optimal bi-layer model for SSC prediction was built based on the finally selected optimal SSC EWs. Results showed that the correlation coefficient of prediction, root mean square error of prediction and selected bands of the bi-layer model were 0.9560, 0.2528 and 41, respectively, which will be more acceptable for future online SSC prediction of various colors of apple. (C) 2017 Elsevier Ltd. All rights reserved.
- 相关文献
作者其他论文 更多>>
-
Detection of Insect-Damaged Maize Seed Using Hyperspectral Imaging and Hybrid 1D-CNN-BiLSTM Model
作者:Wang, Zheli;Chen, Liping;Wang, Zheli;Fan, Shuxiang;An, Ting;Zhang, Chi;Chen, Liping;Huang, Wenqian
关键词:Maize seed; Insect infestation; Hyperspectral imaging; Deep learning; BiLSTM
-
Identification of mould varieties infecting maize kernels based on Raman hyperspectral imaging technique combined with multi-channel residual module convolutional neural network
作者:Long, Yuan;Tang, Xiuying;Zhang, Bin;Long, Yuan;Fan, Shuxiang;Zhang, Chi;Huang, Wenqian;Long, Yuan;Fan, Shuxiang;Zhang, Chi;Huang, Wenqian
关键词:Raman hyperspectral imaging; Maize kernels; Mould varieties; Residual unit; Nondestructive detection
-
Early contamination warning of Aflatoxin B1 in stored maize based on the dynamic change of catalase activity and data fusion of hyperspectral images
作者:Tian, Xi;Yao, Jie;Wang, Wenchao;Huang, Wenqian;Yu, Huishan;Wang, Wenchao;Huang, Wenqian
关键词:Maize; Catalase activity; Aflatoxin B1; Early contamination warning; Hyperspectral image; Data fusion
-
Green analytical assay for the viability assessment of single maize seeds using double-threshold strategy for catalase activity and malondialdehyde content
作者:An, Ting;Fan, Yaoyao;Tian, Xi;Wang, Qingyan;Wang, Zheli;Fan, Shuxiang;Huang, Wenqian;An, Ting
关键词:Hyperspectral imaging; CAT activity; MDA content; Data fusion; Seed viability
-
Physiological Alterations and Nondestructive Test Methods of Crop Seed Vigor: A Comprehensive Review
作者:Xing, Muye;Xing, Muye;Long, Yuan;Wang, Qingyan;Tian, Xi;Fan, Shuxiang;Zhang, Chi;Huang, Wenqian;Xing, Muye;Long, Yuan;Wang, Qingyan;Tian, Xi;Fan, Shuxiang;Zhang, Chi;Huang, Wenqian;Xing, Muye;Long, Yuan;Wang, Qingyan;Tian, Xi;Fan, Shuxiang;Zhang, Chi;Huang, Wenqian;Xing, Muye;Long, Yuan;Wang, Qingyan;Tian, Xi;Fan, Shuxiang;Zhang, Chi;Huang, Wenqian
关键词:physiological factors; novel test; mechanism
-
Identification of Peanut Kernels Infected with Multiple Aspergillus flavus Fungi Using Line-Scan Raman Hyperspectral Imaging
作者:Yang, Guang;Xiang, Daqian;Yang, Guang;Tian, Xi;Fan, Yaoyao;An, Ting;Huang, Wenqian;Long, Yuan;Yang, Guang;Tian, Xi;Fan, Yaoyao;An, Ting;Huang, Wenqian;Long, Yuan;Yang, Guang;Tian, Xi;Fan, Yaoyao;An, Ting;Huang, Wenqian;Long, Yuan;Yang, Guang;Tian, Xi;Fan, Yaoyao;An, Ting;Huang, Wenqian;Long, Yuan
关键词:Line-scan Raman imaging; Aspergillus flavus; Peanut kernels; Feature variable selection; Support vector machine
-
Evaluation of the Black Tea Taste Quality during Fermentation Process Using Image and Spectral Fusion Features
作者:An, Ting;Qi, Dandan;Yuan, Changbo;Dong, Chunwang;An, Ting;Yang, Chongshan;Wang, Zheli;Fan, Yaoyao;Fan, Shuxiang;Huang, Wenqian;Tian, Xi;An, Ting;Yang, Chongshan;Zhang, Jian
关键词:hyperspectral imaging; taste quality; data fusion; black tea; fermentation



