您好,欢迎访问北京市农林科学院 机构知识库!

Detection of early bruises on peaches (Amygdalus persica L.) using hyperspectral imaging coupled with improved watershed segmentation algorithm

文献类型: 外文期刊

作者: Li, Jiangbo 1 ; Chen, Liping 1 ; Huang, Wenqian 1 ;

作者机构: 1.Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China

2.Natl Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China

3.Minist Agr, Key Lab Agri Informat, Beijing 100097, Peoples R China

4.Beijing Key Lab Intelligent Equipment Technol Agr, Beijing 100097, Peoples R China

关键词: Peach bruise;Hyperspectral imaging;Improved watershed segmentation algorithm;Image processing

期刊名称:POSTHARVEST BIOLOGY AND TECHNOLOGY ( 影响因子:5.537; 五年影响因子:5.821 )

ISSN: 0925-5214

年卷期: 2018 年 135 卷

页码:

收录情况: SCI

摘要: Bruise is the most common type of damage to peaches in a major cause of quality loss. However, fast and nondestructive detection of early bruises on peaches is a challenging task. In this study, short-wave near infrared (SW-NIR) and long-wave near infrared (LW-NIR) hyperspectral imaging technologies were observed and compared the ability to discriminate bruised from sound regions. Principal components analysis (PCA) was utilized to select the effective wavelengths for each type of imaging mode. SW-NIR imaging mode was more suitable for detection of early bruises on peaches. A novel improved watershed segmentation algorithm based on morphological gradient reconstruction and marker extraction was developed and applied to the multispectral PC images. The detection results indicated that for all test peaches used in this experiment, 96.5% of the bruised and 97.5% of sound peaches were accurately identified, respectively. A proposed algorithm was superior to the common segmentation methods including Ostu and the global threshold value method. This study demonstrated that SW-NIR hyperspectral imaging coupled with the proposed improved watershed segmentation algorithm could be a potential approach for detection of early bruises on peaches.

  • 相关文献

[1]Fast detection and visualization of early decay in citrus using Vis-NIR hyperspectral imaging. Li, Jiangbo,Huang, Wenqian,Tian, Xi,Wang, Chaopeng,Fan, Shuxiang,Zhao, Chunjiang,Li, Jiangbo,Huang, Wenqian,Tian, Xi,Wang, Chaopeng,Fan, Shuxiang,Zhao, Chunjiang,Li, Jiangbo,Huang, Wenqian,Zhao, Chunjiang.

[2]Detection of Early Rottenness on Apples by Using Hyperspectral Imaging Combined with Spectral Analysis and Image Processing. Zhang, Baohua,Fan, Shuxiang,Li, Jiangbo,Huang, Wenqian,Zhao, Chunjiang,Qian, Man,Zheng, Ling,Zhang, Baohua,Zhao, Chunjiang.

[3]HYPERSPECTRAL IMAGE FOR DISCRIMINATING APHID AND APHID DAMAGE REGION OF WINTER WHEAT LEAF. Luo Juhua,Huang Wenjiang,Guan Qingsong,Zhao Jinling,Zhang Jingcheng. 2013

[4]Survey of Support Vector Machine in the Processing of Remote Sensing Image. Li, Su,Wang, Wenchao. 2013

[5]Quick image processing method of HJ satellites applied in agriculture monitoring. Yu Haiyang,Liu Yanmei,Yang Guijun,Yang Xiaodong,Yu Haiyang,Liu Yanmei,Yang Guijun,Yang Xiaodong. 2016

[6]Detection of defects on apple using B-spline lighting correction method. Li, Jiangbo,Huang, Wenqian,Guo, Zhiming. 2013

[7]Image processing methods to evaluate tomato and zucchini damage in post-harvest stages. Antonio Alvarez-Bermejo, Jose,Giagnocavo, Cynthia,Ming, Li,Yang Xinting,Castillo Morales, Encarnacion,Morales Santos, Diego P.. 2017

[8]THE INFRARED THERMAL IMAGE-BASED MONITORING PROCESS OF PEACH DECAY UNDER UNCONTROLLED TEMPERATURE CONDITIONS. Jiao, L. Z.,Wu, W. B.,Zheng, W. G.,Dong, D. M.. 2015

[9]MOBILE SMART DEVICE-BASED VEGETABLE DISEASE AND INSECT PEST RECOGNITION METHOD. Wang, Kaiyi,Zhang, Shuifa,Wang, Zhibin,Liu, Zhongqiang,Yang, Feng,Wang, Kaiyi,Zhang, Shuifa,Wang, Zhibin,Liu, Zhongqiang,Yang, Feng. 2013

[10]Design and Implementation of an Automatic Grading System of Diced Potatoes Based on Machine Vision. Wang, Chaopeng,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping. 2016

[11]Computer vision detection of defective apples using automatic lightness correction and weighted RVM classifier. Zhang, Baohua,Gong, Liang,Zhao, Chunjiang,Liu, Chengliang,Huang, Danfeng,Zhang, Baohua,Huang, Wenqian,Li, Jiangbo,Zhao, Chunjiang.

[12]Identification of seedling cabbages and weeds using hyperspectral imaging. Wei, Deng,Zhao Chunjiang,Xiu, Wang,Huang, Yanbo,Wei, Deng,Zhao Chunjiang,Xiu, Wang,Wei, Deng,Zhao Chunjiang,Xiu, Wang,Wei, Deng,Zhao Chunjiang,Xiu, Wang. 2015

[13]Effectively Predicting Soluble Solids Content in Apple Based on Hyperspectral Imaging. Huang Wen-qian,Li Jiang-bo,Chen Li-ping,Guo Zhi-ming. 2013

[14]Comparative analysis of models for robust and accurate evaluation of soluble solids content in 'Pinggu' peaches by hyperspectral imaging. Chen, Liping. 2017

[15]Detection of Wheat Powdery Mildew by Differentiating Background Factors using Hyperspectral Imaging. Zhang, Dongyan,Zhang, Lifu,Zhang, Dongyan,Wang, Xiu,Zhang, Dongyan,Wang, Xiu,Lin, Fenfang,Huang, Yanbo. 2016

[16]Rapid determination of biogenic amines in cooked beef using hyperspectral imaging with sparse representation algorithm. Yang, Dong,Lu, Anxiang,Wang, Jihua,Yang, Dong,Wang, Jihua,Lu, Anxiang,Ren, Dong,Wang, Jihua,Lu, Anxiang,Wang, Jihua. 2017

[17]Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Zhang, Baohua,Huang, Wenqian,Li, Jiangbo,Zhao, Chunjiang,Fan, Shuxiang,Wu, Jitao,Zhang, Baohua,Zhao, Chunjiang,Liu, Chengliang. 2014

[18]Measuring the Moisture Content in Maize Kernel Based on Hyperspctral Image of Embryo Region. Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua,Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua,Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua,Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua. 2016

[19]Principles and Applications of Hyperspectral Imaging Technique in Quality and Safety Inspection of Fruits and Vegetables. Zhang Bao-hua,Zhang Bao-hua,Li Jiang-bo,Fan Shu-xiang,Huang Wen-qian,Zhang Chi,Wang Qing-yan,Xiao Guang-dong. 2014

[20]Identification of Wheat Cultivars Based on the Hyperspectral Image of Single Seed. Zhu, Dazhou,Wang, Cheng,Wu, Qiong,Zhao, Chunjiang,Pang, Binshuang,Shan, Fuhua. 2012

作者其他论文 更多>>