Evaluation of Orthomosics and Digital Surface Models Derived from Aerial Imagery for Crop Type Mapping
文献类型: 外文期刊
作者: Wu, Mingquan 1 ; Yang, Chenghai 2 ; Song, Xiaoyu 2 ; Hoffmann, Wesley Clint 2 ; Huang, Wenjiang 4 ; Niu, Zheng 1 ; Wan 1 ;
作者机构: 1.Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, POB 9718,20 Datun Rd, Beijing 100101, Peoples R China
2.USDA ARS, Aerial Applicat Technol Res Unit, 3103 F&B Rd, College Stn, TX 77845 USA
3.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
4.Chinese
关键词: aerial imagery;crop mapping;consumer-grade cameras;crop height;object-based classification
期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )
ISSN: 2072-4292
年卷期: 2017 年 9 卷 3 期
页码:
收录情况: SCI
摘要: Orthomosics and digital surface models (DSM) derived from aerial imagery, acquired by consumer-grade cameras, have the potential for crop type mapping. In this study, a novel method was proposed for extracting the crop height from DSM and for evaluating the orthomosics and crop height for the identification of crop types (mainly corn, cotton, and sorghum). The crop height was extracted by subtracting the DSM derived during the crop growing season from that derived after the crops were harvested. Then, the crops were identified from four-band aerial imagery (blue, green, red, and near-infrared) and the crop height, using an object-based classification method and a maximum likelihood method. The results showed that the extracted crop height had a very high linear correlation with the field measured crop height, with an R-squared value of 0.98. For the object-based method, crops could be identified from the four-band airborne imagery and crop height, with an overall accuracy of 97.50% and a kappa coefficient of 0.95, which were 2.52% and 0.04 higher than those without crop height, respectively. When considering the maximum likelihood, crops could be mapped from the four-band airborne imagery and crop height with an overall accuracy of 78.52% and a kappa coefficient of 0.67, which were 2.63% and 0.04 higher than those without crop height, respectively.
- 相关文献
作者其他论文 更多>>
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation
作者:Sun, Heguang;Shu, Meiyan;Yue, Jibo;Guo, Wei;Sun, Heguang;Zhang, Jie;Feng, Ziheng;Feng, Haikuan;Song, Xiaoyu;Zhou, Lin
关键词:peanut southern blight; SMOTE; hyperspectral reflectance; machine learning; FOD
-
Rice yield and quality estimation coupling hierarchical linear model with remote sensing
作者:Xue, Hanyu;Xu, Xingang;Zhu, Qingzhen;Li, Yafeng;Xue, Hanyu;Xu, Xingang;Meng, Yang;Long, Huiling;Li, Heli;Song, Xiaoyu;Yang, Guijun;Yang, Min;Li, Yafeng;Jiang, Xiangtai
关键词:Hierarchical linear model; Rice yield and quality; Estimation model
-
A fast and lightweight detection model for wheat fusarium head blight spikes in natural environments
作者:Gao, Chunfeng;Guo, Wei;Gong, Zheng;Yue, Jibo;Fu, Yuanyuan;Yang, Chenghai;Feng, Haikuan
关键词:Deep learning; YOLOv5s; Fusarium head blight; Real -time detection; Lightweight architecture
-
Real-time monitoring of maize phenology with the VI-RGS composite index using time-series UAV remote sensing images and meteorological data
作者:Feng, Ziheng;Ma, Xinming;Feng, Ziheng;Cheng, Zhida;Ren, Lipeng;Liu, Bowei;Zhang, Chengjian;Zhao, Dan;Sun, Heguang;Feng, Haikuan;Long, Huiling;Xu, Bo;Yang, Hao;Song, Xiaoyu;Yang, Guijun;Zhao, Chunjiang
关键词:UAV; Real-time; Composite index; Maize phenology; BBCH
-
Improved potato AGB estimates based on UAV RGB and hyperspectral images
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Bian, Mingbo;Ma, Yanpeng;Song, Xiaoyu;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:UAV; VIs; High -frequency information; Wavelet coefficients; AGB
-
Potato Leaf Chlorophyll Content Estimation through Radiative Transfer Modeling and Active Learning
作者:Ma, Yuanyuan;Qiu, Chunxia;Ma, Yuanyuan;Zhang, Jie;Pan, Di;Zheng, Chunkai;Sun, Heguang;Feng, Haikuan;Song, Xiaoyu
关键词:leaf chlorophyll content; hyperspectral; hybrid methods; Gaussian process regression; active learning



