您好,欢迎访问北京市农林科学院 机构知识库!

Models for estimating the leaf NDVI of japonica rice on a canopy scale by combining canopy NDVI and multisource environmental data in Northeast China

文献类型: 外文期刊

作者: Yu Fenghua 1 ; Xu Tongyu 1 ; Cao Yingli 1 ; Yang Guijun 2 ; Du Wen 1 ; Wang Shu 3 ;

作者机构: 1.Shenyang Agr Univ, Coll Informat & Elect Engn, Shenyang 110866, Peoples R China

2.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

3.Shenyang Agr Univ, Coll Agron, Shenyang 110866, Peoples R China

关键词: japonica rice;NDVI;leaf models;canopy scale;environmental data

期刊名称:INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING ( 影响因子:2.032; 五年影响因子:2.137 )

ISSN: 1934-6344

年卷期: 2016 年 9 卷 5 期

页码:

收录情况: SCI

摘要: Remote sensing of rice traits has advanced significantly with regard to the capacity to retrieve useful plant biochemical, physiological and structural quantities across spatial scales. The rice leaf NDVI (normalized difference vegetation index) has been developed and applied in monitoring rice growth, yield prediction and disease status to guide agricultural management practices. This study combined rice canopy NDVI and environmental data to estimate rice leaf NDVI. The test site was a japonica rice experiment located in the eastern city of Shenyang, Liaoning Province, China. This paper describes (1) the use of multiple linear regression to establish four periods of rice leaf NDVI models with good accuracy (R-2=0.782-0.903), and (2) how the key point of the rice growth period based on these models was determined. The techniques for modeling leaf NDVI at the point of remote canopy sensing were also presented. The results indicate that the rice leaf NDVI has a high correlation with the canopy NDVI and multisource environmental data. This research can provide an efficient method to detect rice leaf growth at the canopy scale in the future.

  • 相关文献

[1]基于支持向量回归(SVR)和多时相遥感数据的冬小麦估产. 黎锐,李存军,徐新刚,王纪华,杨小冬,黄文江,潘瑜春. 2009

[2]耕地轮作模式遥感监测. 顾晓鹤,潘瑜春,王堃,杨枫,黄文江. 2011

[3]基于新型植被指数的冬小麦覆盖度遥感估算. 陈召霞,徐新刚,徐良骥,杨贵军,邢会敏,贺鹏. 2016

[4]影响大豆NDVI的气象因素多元回归分析. 张智韬,兰玉彬,郑永军,陈立平,宋鹏. 2015

[5]基于小麦长势遥感监测的土壤氮素累积估测研究. 潘瑜春,王纪华,陆安祥,陆洲. 2007

[6]基于近地光谱探测技术的冬小麦变量施肥. 杨玮,王秀,马伟,李民赞. 2007

[7]土壤背景对冠层NDVI的影响分析. 唐怡,刘良云,黄文江,王纪华. 2006

[8]利用有效积温提高冬小麦估产精度的研究. 陈艳玲,顾晓鹤,董燕生,胡圣武,张秋阳,赵静. 2014

[9]基于多时相TM影像的冬小麦面积变化监测. 崔方宁,宋晓宇,孙宝生,王纪华. 2012

[10]基于变化向量分析的冬小麦长势变化监测研究. 顾晓鹤,宋国宝,韩立建,徐超,潘耀忠. 2008

[11]基于主动光源的归一化植被指数测定系统研究. 魏士平,陈彦,王秀,张睿. 2012

[12]田间作物NDVI测量仪可靠性分析及标定环境研究. . 2019

[13]基于多时相NDVI及特征波段的作物分类研究. 马丽,徐新刚,刘良云,黄文江,贾建华,程一沛. 2008

[14]基于变化向量分析的玉米收获期遥感监测. 王堃,顾晓鹤,程耀东,张竟成,王慧芳,齐迹. 2011

[15]基于PWM变量农药喷洒控制系统的研究. 张涛涛,张文爱,王秀. 2012

[16]利用多时相TM影像进行作物分类方法. 马丽,徐新刚,贾建华,黄文江,刘良云,程一沛. 2008

[17]北京山区植被覆盖动态变化遥感监测研究. 张本昀,喻铮铮,刘良云,张震宇,孙婷婷. 2008

[18]基于时间序列NDVI相似性分析的棉花估产. 高中灵,徐新刚,王纪华,靳华安,杨浩. 2012

[19]基于ESTARFM模型的区域农田高时空分辨率影像产生与应用. 陈梦露,李存军,官云兰,周静平,王道芸,罗正乾. 2019

[20]北京地区冬小麦冠层光谱数据与叶面积指数统计关系研究. 刘东升,李淑敏. 2008

作者其他论文 更多>>