您好,欢迎访问北京市农林科学院 机构知识库!

Estimation of carotenoid content at the canopy scale using the carotenoid triangle ratio index from in situ and simulated hyperspectral data

文献类型: 外文期刊

作者: Kong, Weiping 1 ; Huang, Wenjiang 1 ; Zhou, Xianfeng 1 ; Song, Xiaoyu 3 ; Casa, Raffaele 4 ;

作者机构: 1.Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, 9 Dengzhuang South Rd, Beijing 100094, Peoples R China

2.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China

3.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, 11 Shuguang Hua Yuan Middle Rd, Beijing 100097, Peoples R China

4.Univ Tuscia, Dept Agr & Forestry Sci, Via San Camillo de Lellis, I-01100 Viterbo, Italy

关键词: carotenoid triangle ratio index;hyperspectral remote sensing;vegetation index;carotenoid content;chlorophyll content

期刊名称:JOURNAL OF APPLIED REMOTE SENSING ( 影响因子:1.53; 五年影响因子:1.565 )

ISSN: 1931-3195

年卷期: 2016 年 10 卷

页码:

收录情况: SCI

摘要: Precise estimation of carotenoids (Car) content in plants, from remotely sensed data, is challenging due to their small proportion in the overall total pigment content and to the overlapping of spectral absorption features with chlorophyll (Chl) in the blue region of the spectrum. The use of narrow band vegetation indices (VIs) obtained from hyperspectral data has been considered an effective way to estimate Car content. However, VIs have proved to lack sensitivity to low or high Car content in a number of studies. In this study, the carotenoid triangle ratio index (CTRI), derived from the existing modified triangular vegetation index and a single band reflectance at 531 nm, was proposed and employed to estimate Car canopy content. We tested the potential of three categories of hyperspectral indices earlier proposed for Car, Chl, Car/Chl ratio estimation, and the new CTRI index, for Car canopy content assessment in winter wheat and corn. Spectral reflectance representing plant canopies were simulated using the PROSPECT and SAIL radiative transfer model, with the aim of analyzing saturation effects of these indices, as well as Chl effects on the relationship between spectral indices and Car content. The result showed that the majority of the spectral indices tested, saturated with the increase of Car canopy content above 28 to 64 mu g/cm(2). Conversely, the CTRI index was more robust and was linearly and highly sensitive to Car content in winter wheat and corn datasets, with coefficients of determination of 0.92 and 0.75, respectively. The corresponding root mean square error of prediction were 6.01 and 9.70 mu g/cm(2), respectively. Furthermore, the CTRI index did not show a saturation effect and was not greatly influenced by changes of Chl values, outperforming all the other indices tested. Estimation of Car canopy content using the CTRI index provides an insight into diagnosing plant physiological status and environmental stress. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)

  • 相关文献

[1]Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions. Xie, Qiaoyun,Huang, Wenjiang,Xie, Qiaoyun,Dash, Jadunandan,Song, Xiaoyu,Wang, Renhong,Huang, Linsheng,Zhao, Jinling.

[2]Assessment of Chlorophyll Content Using a New Vegetation Index Based on Multi-Angular Hyperspectral Image Data. Liao Qin-hong,Zhang Dong-yan,Liao Qin-hong,Zhang Dong-yan,Wang Ji-hua,Yang Gui-jun,Yang Hao,Liao Qin-hong,Zhang Dong-yan,Wang Da-cheng,Craig, Coburn,Wong Zhijie. 2014

[3]CHARACTERIZATION OF POWDERY MILDEW IN WINTER WHEAT USING MULTI-ANGULAR HYPERSPECTRAL MEASUREMENTS. Jinling Zhao,Lin Yuan,Linsheng Huang,Dongyan Zhang,Jingcheng Zhang,Xiaohe Gu. 2013

[4]Identifying Leaf-Scale Wheat Aphids Using the Near-Ground Hyperspectral Pushbroom Imaging Spectrometer. Jinling Zhao,Dongyan Zhang,Juhua Luo,Dacheng Wang,Wenjiang Huang. 2012

[5]Monitoring the naked croplands in Beijing with multi-temporal remote sensing images. La Qi,Wenjiang Huang,Jiaogen Zhou,Chunjiang Zhao. 2008

[6]Estimation of Grain Protein Content in Winter Wheat by Using Three Methods with Hyperspectral Data. Xiu-liang Jin,Wang, Ji-hua,Xiu-liang Jin,Xin-gang Xu,Hai-kuan Feng,Xiao-yu Song,Qian Wang,Xiu-liang Jin,Xin-gang Xu,Hai-kuan Feng,Xiao-yu Song,Qian Wang,Xiu-liang Jin,Wang, Ji-hua,Guo, Wen-shan. 2014

[7]ESTIMATION OF LEAF AREA INDEX BY USING MULTI-ANGULAR HYPERSPECTRAL IMAGING DATA BASED ON THE TWO-LAYER CANOPY REFLECTANCE MODEL. Liao, Qinhong,Zhao, Chunjiang,Yang, Guijun,Wang, Jihua,Zhang, Dongyan,Liao, Qinhong,Zhang, Dongyan,Coburn, Craig,Wang, Zhijie. 2013

[8]Mapping paddy biomass with multiple vegetation indexes by using multispectral remotely sensed image. Gu, Xiaohe,Wang, Yancang,Song, Xiaoyu,Xu, Xingang. 2016

[9]Assessment of Aerial Agrichemical Spraying Effect Using Moderate-Resolution Satellite Imagery. Zhang Dong-Yan,Wang Xiu,Chen Li-ping,Ma Wei,Zhang Dong-Yan,Zhang Dong-Yan,Wang Xiu,Chen Li-ping,Li Bin,Ma Wei,Lan Yu-bin,Lan Yu-bin,Zhou Xin-gen. 2016

[10]REMOTE SENSING OF THE SEASONAL NAKED CROPLANDS USING SERIES OF NDVI IMAGES AND PHENOLOGICAL FEATURE. Shan, Zhengying,Xu, Qingyen. 2013

[11]Forecasting of Powdery Mildew disease with multi-sources of remote sensing information. Zhang, Jingcheng,Yuan, Lin,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Zhang, Jingcheng,Yang, Guijun,Zhang, Jingcheng,Yang, Guijun,Zhang, Jingcheng,Yuan, Lin. 2014

[12]Validation of two Huanjing-1A/B satellite-based FAO-56 models for estimating winter wheat crop evapotranspiration during mid-season. Jin, Xiuliang,Yang, Guijun,Xue, Xuzhang,Xu, Xingang,Li, Zhenhai,Feng, Haikuan,Jin, Xiuliang,Yang, Guijun,Xue, Xuzhang,Xu, Xingang,Li, Zhenhai,Feng, Haikuan,Jin, Xiuliang,Yang, Guijun,Xue, Xuzhang,Xu, Xingang,Li, Zhenhai,Feng, Haikuan,Jin, Xiuliang.

[13]Hyperspectral Discrimination and Response Characteristics of Stressed Rice Leaves Caused by Rice Leaf Folder. Liu, Zhanyu,Ding, Xiaodong,Zhou, Bin,Liu, Zhanyu,Cheng, Jia-an,Huang, Wenjiang,Li, Cunjun,Xu, Xingang,Shi, Jingjing. 2012

[14]Leaf Area Index Estimation Using Vegetation Indices Derived From Airborne Hyperspectral Images in Winter Wheat. Xie, Qiaoyun,Huang, Wenjiang,Liang, Dong,Huang, Linsheng,Zhang, Dongyan,Chen, Pengfei,Wu, Chaoyang,Yang, Guijun,Zhang, Jingcheng. 2014

[15]Identifying Leaf-Scale Wheat Aphids Using the Near-Ground Hyperspectral Pushbroom Imaging Spectrometer. Zhao, Jinling,Zhang, Dongyan,Luo, Juhua,Wang, Dacheng,Huang, Wenjiang. 2012

[16]Associating new spectral features from visible and near infrared regions with optimal combination principle to monitor leaf nitrogen concentration in barley. Xu Xin-Gang,Zhao Chun-Jiang,Wang Ji-Hua,Li Cun-Jun,Yang Xiao-Dong. 2013

[17]New Vegetation Index Fusing Visible-Infrared and Shortwave Infrared Spectral Feature for Winter Wheat LAI Retrieval. Li Xin-chuan,Xu Xin-gang,Jin Xiu-liang,Zhang Jing-cheng,Song Xiao-yu,Li Xin-chuan,Xu Xin-gang,Jin Xiu-liang,Zhang Jing-cheng,Song Xiao-yu,Li Xin-chuan,Bao Yan-song. 2013

[18]Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models. Yuan, Huanhuan,Yang, Guijun,Wang, Yanjie,Liu, Jiangang,Yu, Haiyang,Feng, Haikuan,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong,Yuan, Huanhuan,Li, Changchun,Wang, Yanjie,Yuan, Huanhuan,Yang, Guijun,Liu, Jiangang,Feng, Haikuan,Yang, Xiaodong,Yang, Guijun,Yu, Haiyang,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong. 2017

[19]A Method to Reconstruct the Solar-Induced Canopy Fluorescence Spectrum from Hyperspectral Measurements. Zhao, Feng,Guo, Yiqing,Verhoef, Wout,Gu, Xingfa,Liu, Liangyun,Yang, Guijun. 2014

[20]Band Depth Analysis and Partial Least Square Regression Based Winter Wheat Biomass Estimation Using Hyperspectral Measurements. Fu Yuan-yuan,Wang Ji-hua,Fu Yuan-yuan,Wang Ji-hua,Yang Gui-jun,Song Xiao-yu,Xu Xin-gang,Feng Hai-kuan,Fu Yuan-yuan,Wang Ji-hua,Yang Gui-jun,Song Xiao-yu,Xu Xin-gang,Feng Hai-kuan. 2013

作者其他论文 更多>>