您好,欢迎访问北京市农林科学院 机构知识库!

The Study of Winter Wheat Biomass Estimation Model Based on Hyperspectral Remote Sensing

文献类型: 外文期刊

作者: Teng, Xiaowei 1 ; Dong, Yansheng 1 ; Meng, Lumin 5 ;

作者机构: 1.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

3.Minist Agr, Key Lab Agriinformat, Beijing 100097, Peoples R China

4.Beijing Engn Res Ctr Agr Internet Things, Beijing 100097, Peoples R China

5.Xian Univ Sci & Technol, Coll Geomat, Xian 710054, Peoples R China

关键词: Winter wheat;Biomass;Hyperspectral remote sensing;TINDVI;LWCI

期刊名称:COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE IX, CCTA 2015, PT II

ISSN: 1868-4238

年卷期: 2016 年 479 卷

页码:

收录情况: SCI

摘要: Biomass plays an important role in crop growth and yield formation. The study of biomass has been expanded to remote sensing sphere, which provides more ways to the obtainment of crop biomass. To carry out the study of winter wheat biomass estimation model, the field experiments were conducted at Rougu test area and Wugong test area, Shanxi Province in the cropping season 2013-2014. The biomass estimation model was based on the Time-Integrated Value of NDVI (TINDVI) and Leaf Water Content Index (LWCI), which was used to predict the winter wheat biomass. And the model was validated with the ground measured biomass. The results showed that the determination coefficient (R-2) and root mean square error (RMSE) between the measured and the estimated biomass were 0.7949 and 2.689 t/ha, respectively. The estimated biomass was exactly similar to the field measured biomass, therefore this model had a good application prospect.

  • 相关文献

[1]Band Depth Analysis and Partial Least Square Regression Based Winter Wheat Biomass Estimation Using Hyperspectral Measurements. Fu Yuan-yuan,Wang Ji-hua,Fu Yuan-yuan,Wang Ji-hua,Yang Gui-jun,Song Xiao-yu,Xu Xin-gang,Feng Hai-kuan,Fu Yuan-yuan,Wang Ji-hua,Yang Gui-jun,Song Xiao-yu,Xu Xin-gang,Feng Hai-kuan. 2013

[2]CHARACTERIZATION OF POWDERY MILDEW IN WINTER WHEAT USING MULTI-ANGULAR HYPERSPECTRAL MEASUREMENTS. Jinling Zhao,Lin Yuan,Linsheng Huang,Dongyan Zhang,Jingcheng Zhang,Xiaohe Gu. 2013

[3]Leaf Area Index Estimation Using Vegetation Indices Derived From Airborne Hyperspectral Images in Winter Wheat. Xie, Qiaoyun,Huang, Wenjiang,Liang, Dong,Huang, Linsheng,Zhang, Dongyan,Chen, Pengfei,Wu, Chaoyang,Yang, Guijun,Zhang, Jingcheng. 2014

[4]CHARACTERIZATION OF POWDERY MILDEW IN WINTER WHEAT USING MULTI-ANGULAR HYPERSPECTRAL MEASUREMENTS. Zhao, Jinling,Yuan, Lin,Zhang, Dongyan,Zhang, Jingcheng,Gu, Xiaohe,Huang, Linsheng,Zhang, Dongyan. 2013

[5]Evaluation of spectral indices and continuous wavelet analysis to quantify aphid infestation in wheat. Luo, Juhua,Huang, Wenjiang,Yuan, Lin,Zhao, Chunjiang,Zhang, Jingcheng,Zhao, Jinling,Du, Shizhou.

[6]Winter wheat biomass estimation based on canopy spectra. Zheng Ling,Zhu Dazhou,Zhang Baohua,Wang Cheng,Zhao Chunjiang,Zheng Ling,Liang Dong. 2015

[7]Monitoring of Winter Wheat Aboveground Fresh Biomass Based on Multi-Information Fusion Technology. Zheng Ling,Dong Da-ming,Zhang Bao-hua,Wang Cheng,Zhao Chun-jiang,Zheng Ling,Zhu Da-zhou. 2016

[8]Combined Multi-Temporal Optical and Radar Parameters for Estimating LAI and Biomass in Winter Wheat Using HJ and RADARSAR-2 Data. Jin, Xiuliang,Yang, Guijun,Xu, Xingang,Yang, Hao,Feng, Haikuan,Li, Zhenhai,Shen, Jiaxiao,Zhao, Chunjiang,Jin, Xiuliang,Yang, Guijun,Xu, Xingang,Yang, Hao,Feng, Haikuan,Li, Zhenhai,Shen, Jiaxiao,Zhao, Chunjiang,Jin, Xiuliang,Yang, Guijun,Zhao, Chunjiang,Xu, Xingang,Zhao, Chunjiang,Lan, Yubin. 2015

[9]Estimation of Winter Wheat Biomass and Yield by Combining the AquaCrop Model and Field Hyperspectral Data. Jin, Xiuliang,Kumar, Lalit,Li, Zhenhai,Xu, Xingang,Yang, Guijun,Li, Zhenhai,Xu, Xingang,Yang, Guijun,Wang, Jihua. 2016

[10]Identifying Leaf-Scale Wheat Aphids Using the Near-Ground Hyperspectral Pushbroom Imaging Spectrometer. Jinling Zhao,Dongyan Zhang,Juhua Luo,Dacheng Wang,Wenjiang Huang. 2012

[11]Hyperspectral Discrimination and Response Characteristics of Stressed Rice Leaves Caused by Rice Leaf Folder. Liu, Zhanyu,Ding, Xiaodong,Zhou, Bin,Liu, Zhanyu,Cheng, Jia-an,Huang, Wenjiang,Li, Cunjun,Xu, Xingang,Shi, Jingjing. 2012

[12]Identifying Leaf-Scale Wheat Aphids Using the Near-Ground Hyperspectral Pushbroom Imaging Spectrometer. Zhao, Jinling,Zhang, Dongyan,Luo, Juhua,Wang, Dacheng,Huang, Wenjiang. 2012

[13]Estimation of carotenoid content at the canopy scale using the carotenoid triangle ratio index from in situ and simulated hyperspectral data. Kong, Weiping,Huang, Wenjiang,Zhou, Xianfeng,Kong, Weiping,Zhou, Xianfeng,Song, Xiaoyu,Casa, Raffaele. 2016

[14]Associating new spectral features from visible and near infrared regions with optimal combination principle to monitor leaf nitrogen concentration in barley. Xu Xin-Gang,Zhao Chun-Jiang,Wang Ji-Hua,Li Cun-Jun,Yang Xiao-Dong. 2013

[15]New Vegetation Index Fusing Visible-Infrared and Shortwave Infrared Spectral Feature for Winter Wheat LAI Retrieval. Li Xin-chuan,Xu Xin-gang,Jin Xiu-liang,Zhang Jing-cheng,Song Xiao-yu,Li Xin-chuan,Xu Xin-gang,Jin Xiu-liang,Zhang Jing-cheng,Song Xiao-yu,Li Xin-chuan,Bao Yan-song. 2013

[16]Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models. Yuan, Huanhuan,Yang, Guijun,Wang, Yanjie,Liu, Jiangang,Yu, Haiyang,Feng, Haikuan,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong,Yuan, Huanhuan,Li, Changchun,Wang, Yanjie,Yuan, Huanhuan,Yang, Guijun,Liu, Jiangang,Feng, Haikuan,Yang, Xiaodong,Yang, Guijun,Yu, Haiyang,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong. 2017

[17]A Method to Reconstruct the Solar-Induced Canopy Fluorescence Spectrum from Hyperspectral Measurements. Zhao, Feng,Guo, Yiqing,Verhoef, Wout,Gu, Xingfa,Liu, Liangyun,Yang, Guijun. 2014

[18]Comparison of Four Chemometric Techniques for Estimating Leaf Nitrogen Concentrations in Winter Wheat (Triticum Aestivum) Based on Hyperspectral Features. Li, Zh.,Wei, Ch.,Wang, J.,Li, Zh.,Nie, Ch.,Xu, X.,Song, X.,Li, Zh.,Nie, Ch.,Xu, X.,Song, X.,Wang, J..

[19]Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions. Xie, Qiaoyun,Huang, Wenjiang,Xie, Qiaoyun,Dash, Jadunandan,Song, Xiaoyu,Wang, Renhong,Huang, Linsheng,Zhao, Jinling.

[20]Simulation of Winter Wheat Phenology in Beijing Area with DSSAT-CERES Model. Haikuan Feng,Zhenhai Li,Peng He,Xiuliang Jin,Guijun Yang,Haiyang Yu,Fuqin Yang. 2016

作者其他论文 更多>>