您好,欢迎访问北京市农林科学院 机构知识库!

Winter wheat biomass estimation based on canopy spectra

文献类型: 外文期刊

作者: Zheng Ling 1 ; Zhu Dazhou 1 ; Liang Dong 2 ; Zhang Baohua 1 ; Wang Cheng 1 ; Zhao Chunjiang 1 ;

作者机构: 1.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

2.Anhui Univ, Sch Elect Informat Engn, Hefei 230039, Peoples R China

关键词: winter wheat;biomass;canopy spectra;crop growth period;partial least square regression

期刊名称:INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING ( 影响因子:2.032; 五年影响因子:2.137 )

ISSN: 1934-6344

年卷期: 2015 年 8 卷 6 期

页码:

收录情况: SCI

摘要: The winter wheat aboveground biomass is an important agronomic parameter to estimate the growth status, and evaluate the yield and quality. Spectrum technique provides a nondestructive and fast method for estimating the winter wheat biomass. In order to find the optimum model by analyzing the wheat canopy spectral characteristic during the whole growth period, field trails were conducted at the National Demonstration Base of Precision Agriculture in Beijing Xiaotangshan town. A portable spectrometer (200-1100 nm) was used to collect the wheat canopy spectra of different varieties at the different growth stages (green stage, jointing stage, booting stage, heading stage and filling stage), clipping the winter wheat at ground level at the same time. Regression and correlation analysis were used to establish the winter wheat biomass estimation models in this study. The results showed that the biggest different bands of the winter wheat canopy spectral reflection curves mainly lied along the blue and near-infrared bands. The spectral reflectance at 678 nm in the visible light range had the best correlation with the biomass (correlation=0.724). The monadic regression analysis, the multiple regression analysis and the partial least squares regression analysis were applied to establish the biomass estimation models, among which the partial least squares regression (PLS) model had higher modeling precision. The R-2 of the calibration and validation were 0.916 and 0.911, respectively. The root-mean-square error (RMSE) of the calibration and validation were 0.090 kg and 0.094 kg (Sample area 50 cmx60 cm). The results indicated that the PLS model (400-1000 nm) could fully estimate the aboveground biomass in the whole growth period of wheat with a better measurement accuracy.

  • 相关文献

[1]Band Depth Analysis and Partial Least Square Regression Based Winter Wheat Biomass Estimation Using Hyperspectral Measurements. Fu Yuan-yuan,Wang Ji-hua,Fu Yuan-yuan,Wang Ji-hua,Yang Gui-jun,Song Xiao-yu,Xu Xin-gang,Feng Hai-kuan,Fu Yuan-yuan,Wang Ji-hua,Yang Gui-jun,Song Xiao-yu,Xu Xin-gang,Feng Hai-kuan. 2013

[2]Monitoring of Winter Wheat Aboveground Fresh Biomass Based on Multi-Information Fusion Technology. Zheng Ling,Dong Da-ming,Zhang Bao-hua,Wang Cheng,Zhao Chun-jiang,Zheng Ling,Zhu Da-zhou. 2016

[3]Combined Multi-Temporal Optical and Radar Parameters for Estimating LAI and Biomass in Winter Wheat Using HJ and RADARSAR-2 Data. Jin, Xiuliang,Yang, Guijun,Xu, Xingang,Yang, Hao,Feng, Haikuan,Li, Zhenhai,Shen, Jiaxiao,Zhao, Chunjiang,Jin, Xiuliang,Yang, Guijun,Xu, Xingang,Yang, Hao,Feng, Haikuan,Li, Zhenhai,Shen, Jiaxiao,Zhao, Chunjiang,Jin, Xiuliang,Yang, Guijun,Zhao, Chunjiang,Xu, Xingang,Zhao, Chunjiang,Lan, Yubin. 2015

[4]The Study of Winter Wheat Biomass Estimation Model Based on Hyperspectral Remote Sensing. Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Meng, Lumin. 2016

[5]Estimation of Winter Wheat Biomass and Yield by Combining the AquaCrop Model and Field Hyperspectral Data. Jin, Xiuliang,Kumar, Lalit,Li, Zhenhai,Xu, Xingang,Yang, Guijun,Li, Zhenhai,Xu, Xingang,Yang, Guijun,Wang, Jihua. 2016

[6]Spectroscopic Leaf Level Detection of Powdery Mildew for Winter Wheat Using Continuous Wavelet Analysis. Zhang Jing-cheng,Yuan Lin,Wang Ji-hua,Huang Wen-jiang,Chen Li-ping,Zhang Dong-yan,Zhang Jing-cheng,Yuan Lin,Wang Ji-hua,Zhang Dong-yan,Huang Wen-jiang. 2012

[7]Determination of Cr, Zn, As and Pb in Soil by X-Ray Fluorescence Spectrometry Based on a Partial Least Square Regression Model. Lu, Anxiang,Wang, Jihua,Pan, Ligang,Lu, Anxiang,Qin, Xiangyang,Wang, Jihua,Zhu, Dazhou,Sun, Jiang. 2011

[8]ESTIMATION OF LEAF AREA INDEX BY USING MULTI-ANGULAR HYPERSPECTRAL IMAGING DATA BASED ON THE TWO-LAYER CANOPY REFLECTANCE MODEL. Liao, Qinhong,Zhao, Chunjiang,Yang, Guijun,Wang, Jihua,Zhang, Dongyan,Liao, Qinhong,Zhang, Dongyan,Coburn, Craig,Wang, Zhijie. 2013

[9]Simulation of Winter Wheat Phenology in Beijing Area with DSSAT-CERES Model. Haikuan Feng,Zhenhai Li,Peng He,Xiuliang Jin,Guijun Yang,Haiyang Yu,Fuqin Yang. 2016

[10]CHARACTERIZATION OF POWDERY MILDEW IN WINTER WHEAT USING MULTI-ANGULAR HYPERSPECTRAL MEASUREMENTS. Jinling Zhao,Lin Yuan,Linsheng Huang,Dongyan Zhang,Jingcheng Zhang,Xiaohe Gu. 2013

[11]Retrieval of LAI and leaf chlorophyll content from remote sensing data by agronomy mechanism knowledge to solve the ill-posed inverse problem. Zhenhai Li,Chenwei Nie,Guijun Yang,Xingang Xu,Xiuliang Jin,Xiaohe Gu. 2014

[12]Monitoring the ratio of leaf carbon to nitrogen in winter wheat with hyperspectral measurements. Xin-gang Xu,Xiao-dong Yang,Xiao-he Gu,Hao Yang,Hai-kuan Feng,Gui-jun Yang,Xiao-yu,Song. 2015

[13]Study the Spatial-Temporal Variation of Wheat Growth Under Different Site-Specific Nitrogen Fertilization Approaches. Bei Cui,Wenjiang Huang,Xiaoyu Song,Huichun Ye,Yingying Dong. 2019

[14]EVALUATION OF ARABLE LAND YIELD POTENTIAL THROUGH REMOTE SENSING MONITORING. Song Xiaoyu,Gu Xiaohe,Wang Jihua,Chang Hong. 2014

[15]SPATIAL VARIABILITY OF WINTER WHEAT GROWTH BASED ON THE INDIVIDUAL INDEX AND THE POPULATION INDEX. Bei Cui,Xiaoyu Song,Wude Yang,Meichen Feng,Jihua Wang. 2014

[16]A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy. Yue, Jibo,Feng, Haikuan,Yang, Guijun,Li, Zhenhai,Yue, Jibo,Yue, Jibo,Yang, Guijun,Li, Zhenhai,Feng, Haikuan,Yang, Guijun,Li, Zhenhai. 2018

[17]BIOMASS ESTIMATION OF OILSEED RAPE USING SIMULATED COMPACT POLARIMTRIC SAR IMAGERY. Yang, Hao,Yang, Guijun,Gu, Xiaohe,Xie, Lei,Zhang, Hong,Yang, Hao,Chen, Erxue,Yang, Hao,Li, Zhenhong. 2016

[18]Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the AquaCrop model using the particle swarm optimization algorithm. Jin, Xiuliang,Jin, Xiuliang,Li, Zhenhai,Yang, Guijun,Yang, Hao,Feng, Haikuan,Xu, Xingang,Wang, Jihua,Jin, Xiuliang,Li, Zhenhai,Yang, Guijun,Yang, Hao,Feng, Haikuan,Xu, Xingang,Wang, Jihua,Li, Xinchuan,Luo, Juhua.

[19]Effect of nitrogen and sulfur interaction on growth and pungency of different pseudostem types of Chinese spring onion (Allium fistulosum L.). Liu, Songzhong,Feng, Gu,Chen, Qing,Liu, Songzhong,He, Hongju.

[20]Biomass resources and their bioenergy potential estimation: A review. Long, Huiling,Li, Xiaobing,Wang, Hong,Long, Huiling,Jia, Jingdun.

作者其他论文 更多>>