您好,欢迎访问北京市农林科学院 机构知识库!

Identification of seedling cabbages and weeds using hyperspectral imaging

文献类型: 外文期刊

作者: Wei, Deng 1 ; Huang, Yanbo 2 ; Zhao Chunjiang 1 ; Xiu, Wang 1 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China

2.Agr Res Serv, US Dept Agr, Crop Prod Syst Res Unit, Stoneville, MS USA

3.Natl Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China

4.Minist Agr, Key Lab Agriinformat, Beijing 100097, Peoples R China

5.Beijing Key Lab Intelligent Equipment Technol Agr, Beijing 100097, Peoples R China

6.Beijing Key Lab Intelligent Equipment

关键词: hyperspectral imaging;weed identification;cabbage;seedlings

期刊名称:INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING ( 影响因子:2.032; 五年影响因子:2.137 )

ISSN: 1934-6344

年卷期: 2015 年 8 卷 5 期

页码:

收录情况: SCI

摘要: Target detection is one of research focuses for precision chemical application. This study developed a method to identify seedling cabbages and weeds using hyperspectral imaging. In processing the image data with ENVI software, after dimension reduction, noise reduction, de-correlation for high-dimensional data, and selection of the region of interest, the SAM (Spectral Angle Mapping) model was built for automatic identification of cabbages and weeds. With the HSI (Hyper Spectral Imaging) Analyzer, the training pixels were used to calculate the average spectrum as the standard spectrum. The parameters of the SAM model, which had the best classification results with 3-point smoothing, zero-order derivative, and 6-degrees spectral angle, was determined to achieve the accurate identification of the background, weeds, and cabbages. In comparison, the SAM model can completely separate the plants from the soil background but not perfect for weeds to be separated from the cabbages. hi conclusion, the SAM classification model with the HSI analyzer could completely distinguish weeds from background and cabbages.

  • 相关文献

[1]Research on Spectra Recognition Method for Cabbages and Weeds Based on PCA and SIMCA. Zu Qin,Deng Wei,Wang Xiu,Zhao Chun-jiang,Zu Qin,Deng Wei,Wang Xiu,Zhao Chun-jiang,Zu Qin. 2013

[2]HYPERSPECTRAL IMAGE FOR DISCRIMINATING APHID AND APHID DAMAGE REGION OF WINTER WHEAT LEAF. Luo Juhua,Huang Wenjiang,Guan Qingsong,Zhao Jinling,Zhang Jingcheng. 2013

[3]Effectively Predicting Soluble Solids Content in Apple Based on Hyperspectral Imaging. Huang Wen-qian,Li Jiang-bo,Chen Li-ping,Guo Zhi-ming. 2013

[4]Comparative analysis of models for robust and accurate evaluation of soluble solids content in 'Pinggu' peaches by hyperspectral imaging. Chen, Liping. 2017

[5]Detection of Wheat Powdery Mildew by Differentiating Background Factors using Hyperspectral Imaging. Zhang, Dongyan,Zhang, Lifu,Zhang, Dongyan,Wang, Xiu,Zhang, Dongyan,Wang, Xiu,Lin, Fenfang,Huang, Yanbo. 2016

[6]Rapid determination of biogenic amines in cooked beef using hyperspectral imaging with sparse representation algorithm. Yang, Dong,Lu, Anxiang,Wang, Jihua,Yang, Dong,Wang, Jihua,Lu, Anxiang,Ren, Dong,Wang, Jihua,Lu, Anxiang,Wang, Jihua. 2017

[7]Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Zhang, Baohua,Huang, Wenqian,Li, Jiangbo,Zhao, Chunjiang,Fan, Shuxiang,Wu, Jitao,Zhang, Baohua,Zhao, Chunjiang,Liu, Chengliang. 2014

[8]Measuring the Moisture Content in Maize Kernel Based on Hyperspctral Image of Embryo Region. Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua,Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua,Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua,Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua. 2016

[9]Principles and Applications of Hyperspectral Imaging Technique in Quality and Safety Inspection of Fruits and Vegetables. Zhang Bao-hua,Zhang Bao-hua,Li Jiang-bo,Fan Shu-xiang,Huang Wen-qian,Zhang Chi,Wang Qing-yan,Xiao Guang-dong. 2014

[10]Identification of Wheat Cultivars Based on the Hyperspectral Image of Single Seed. Zhu, Dazhou,Wang, Cheng,Wu, Qiong,Zhao, Chunjiang,Pang, Binshuang,Shan, Fuhua. 2012

[11]HYPERSPECTRAL IMAGE FOR DISCRIMINATING APHID AND APHID DAMAGE REGION OF WINTER WHEAT LEAF. Luo Juhua,Huang Wenjiang,Guan Qingsong,Zhao Jinling,Zhang Jingcheng. 2013

[12]Detection of early bruises on peaches (Amygdalus persica L.) using hyperspectral imaging coupled with improved watershed segmentation algorithm. Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian. 2018

[13]Study on the optimal algorithm prediction of corn leaf component information based on hyperspectral imaging. Wu, Qiong,Xu, Tongyu,Wu, Qiong,Wang, Jihua,Wang, Cheng. 2016

[14]Vertical features of yellow rust infestation on winter wheat using hyperspectral imaging measurements. Zhao, Jinling,Zhang, Dongyan,Huang, Linsheng,Zhang, Qing,Liu, Wenjing,Yang, Hao. 2016

[15]Combination of spectral and textural information of hyperspectral imaging for the prediction of the moisture content and storage time of cooked beef. Yang, Dong,Lu, Anxiang,Wang, Jihua,Yang, Dong,Wang, Jihua,He, Dandan,Lu, Anxiang,Ren, Dong,Wang, Jihua,Lu, Anxiang,Wang, Jihua. 2017

[16]Measurement of Light Penetration Depth through Milk Powder Layer in Raman Hyperspectral Imaging System. Liu Chen,Chen Li-ping,Liu Chen,Wang Qing-yan,Huang Wen-qian,Chen Li-ping,Yang Gui-yan,Wang Xiao-bin,Liu Chen,Wang Qing-yan,Huang Wen-qian,Chen Li-ping,Yang Gui-yan,Wang Xiao-bin,Liu Chen,Wang Qing-yan,Huang Wen-qian,Chen Li-ping,Yang Gui-yan,Wang Xiao-bin. 2017

[17]Recognition of wheat preharvest sprouting based on hyperspectral imaging. Wu, Qiong,Wang, Jihua,Wu, Qiong,Zhu, Dazhou,Wang, Cheng,Ma, Zhihong,Wang, Jihua. 2012

[18]Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data. Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi.

[19]Detection of the Freshness State of Cooked Beef During Storage Using Hyperspectral Imaging. Yang, Dong,Wang, Jihua,He, Dandan,Lu, Anxiang,Ren, Dong,Wang, Jihua,Lu, Anxiang,Wang, Jihua,Lu, Anxiang,Wang, Jihua.

[20]Detection of blueberry internal bruising over time using NIR hyperspectral reflectance imaging with optimum wavelengths. Fan, Shuxiang,Huang, Wenqian,Chen, Liping,Fan, Shuxiang,Li, Changying.

作者其他论文 更多>>