您好,欢迎访问北京市农林科学院 机构知识库!

Winter Wheat GPC Estimation with Fluorescence-based Sensor Measurements of Canopy

文献类型: 外文期刊

作者: Song Xiaoyu 1 ; Wang Jihua 2 ; Gu Xiaohe 1 ; Xu Xingang 1 ;

作者机构: 1.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

2.Beijing Acad Agr & Forestry Sci, Beijing 100097, Peoples R China

3.Beijing Res Ctr Agrifood Testing & Farmland Monit, Beijing 100097, Peoples R China

关键词: Winter wheat;leaf nitrogen content (LNC);canopy nitrogen density (CND);grain protein content (GPC);Fluorescence Spectral parameters;multiplex 3

期刊名称:REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVII

ISSN: 0277-786X

年卷期: 2015 年 9637 卷

页码:

收录情况: SCI

摘要: This study focused on the wheat grain protein content (GPC) estimation based on wheat canopy chlorophyll parameters which acquired by hand-held instrument, Multiplex 3. Nine fluorescence spectral indices from Multiplex sensor were used in this study. The wheat GPC estimation experiment was conducted in 2012 at the National Experiment Station for Precision Agriculture in Changping district, Beijing. A square with area of 1.1 ha was selected and divided to 110 small plots by 10x10m in this study. In each plot, four 1-m2 area distributed in the square were selected for canopy fluorescence spectral measurements, physiological and biochemical analyses. Measurements were performed five times at wheat raising, jointing, heading stage, milking and ripening stage, respectively. The wheat plant samples for each plot were then collected after the measurement and sent to Lab for leaf N concentration (LNC) and canopy nitrogen density (CND) analyzed. GPC sampling for each plot was collected manually during the harvested season. Then, statistical analysis were performed to detect the correlation between fluorescence spectral indices and wheat CND for each growth stage, as well as GPC. The results indicate that two Nitrogen Balance Indices, NBI_G and NBI_R were more sensitive to wheat GPC than other fluorescence spectral indices at milking stage and ripening stage. Five linear regression models with GPC and fluorescence indices at different winter wheat growth stages were then established. The R-2 of GPC estimated model increased form 0.312 at raising stage to 0.686 at ripening stage. The study reveals that canopy-level fluorescence spectral parameters were better indicators for the wheat group activity and could be demonstrated to be good indicators for winter wheat GPC estimation.

  • 相关文献

[1]Winter Wheat GPC Estimation Based on Leaf and Canopy Chlorophyll Parameters. Song Xiao-yu,Yang Gui-jun,Chang Hong,Song Xiao-yu,Wang Ji-hua,Yang Gui-jun,Chang Hong,Wang Ji-hua,Cui Bei. 2014

[2]Spatial Variability Analysis of Within-Field Winter Wheat Nitrogen and Grain Quality Using Canopy Fluorescence Sensor Measurements. Song, Xiaoyu,Yang, Guijun,Song, Xiaoyu,Yang, Guijun,Song, Xiaoyu,Yang, Chenghai,Wang, Jihua,Cui, Bei. 2017

[3]WINTER WHEAT CROPLAND GRAIN PROTEIN CONTENT EVALUATION THROUGH REMOTE SENSING. Song, Xiaoyu,Yang, Guijun,Feng, Haikuan,Wang, Jihua. 2014

[4]Simulation of Winter Wheat Phenology in Beijing Area with DSSAT-CERES Model. Haikuan Feng,Zhenhai Li,Peng He,Xiuliang Jin,Guijun Yang,Haiyang Yu,Fuqin Yang. 2016

[5]CHARACTERIZATION OF POWDERY MILDEW IN WINTER WHEAT USING MULTI-ANGULAR HYPERSPECTRAL MEASUREMENTS. Jinling Zhao,Lin Yuan,Linsheng Huang,Dongyan Zhang,Jingcheng Zhang,Xiaohe Gu. 2013

[6]Retrieval of LAI and leaf chlorophyll content from remote sensing data by agronomy mechanism knowledge to solve the ill-posed inverse problem. Zhenhai Li,Chenwei Nie,Guijun Yang,Xingang Xu,Xiuliang Jin,Xiaohe Gu. 2014

[7]Monitoring the ratio of leaf carbon to nitrogen in winter wheat with hyperspectral measurements. Xin-gang Xu,Xiao-dong Yang,Xiao-he Gu,Hao Yang,Hai-kuan Feng,Gui-jun Yang,Xiao-yu,Song. 2015

[8]Study the Spatial-Temporal Variation of Wheat Growth Under Different Site-Specific Nitrogen Fertilization Approaches. Bei Cui,Wenjiang Huang,Xiaoyu Song,Huichun Ye,Yingying Dong. 2019

[9]EVALUATION OF ARABLE LAND YIELD POTENTIAL THROUGH REMOTE SENSING MONITORING. Song Xiaoyu,Gu Xiaohe,Wang Jihua,Chang Hong. 2014

[10]SPATIAL VARIABILITY OF WINTER WHEAT GROWTH BASED ON THE INDIVIDUAL INDEX AND THE POPULATION INDEX. Bei Cui,Xiaoyu Song,Wude Yang,Meichen Feng,Jihua Wang. 2014

[11]Estimating Winter Wheat Leaf Area Index From Ground and Hyperspectral Observations Using Vegetation Indices. Xie, Qiaoyun,Huang, Wenjiang,Zhang, Bing,Dong, Yingying,Xie, Qiaoyun,Chen, Pengfei,Song, Xiaoyu,Pascucci, Simone,Pignatti, Stefano,Laneve, Giovanni. 2016

[12]Winter wheat biomass estimation based on canopy spectra. Zheng Ling,Zhu Dazhou,Zhang Baohua,Wang Cheng,Zhao Chunjiang,Zheng Ling,Liang Dong. 2015

[13]MONITORING WINTER WHEAT MATURITY BY HYPERSPECTRAL VEGETATION INDICES. Wang, Qian,Huang, Yuanfang,Wang, Qian,Li, Cunjun,Wang, Jihua,Song, Xiaoyu,Huang, Wenjiang. 2012

[14]Discrimination of yellow rust and powdery mildew in wheat at leaf level using spectral signatures. Yuan, Lin,Zhang, Jingcheng,Zhao, Jinling,Du, Shizhou,Huang, Wenjiang,Wang, Jihua. 2012

[15]SELECTION OF SPECTRAL CHANNELS FOR SATELLITE SENSORS IN MONITORING YELLOW RUST DISEASE OF WINTER WHEAT. Yuan, Lin,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Wang, Jihua. 2013

[16]Damage Mapping of Powdery Mildew in Winter Wheat with High-Resolution Satellite Image. Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Wang, Jihua,Zhang, Jingcheng,Wang, Jihua,Zhang, Jingcheng,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Wang, Jihua,Shi, Yeyin. 2014

[17]Monitoring and Forecasting Winter Wheat Freeze Injury and Yield from Multi-Temporal Remotely Sensed Data. Wang, Huifang,Huo, Zhiguo,Zhou, Guangsheng,Wu, Li,Wang, Huifang,Feng, Haikuan. 2016

[18]Hyperspectral Estimation of Leaf Water Content for Winter Wheat Based on Grey Relational Analysis(GRA). Jin Xiu-liang,Wang Yan,Tan Chang-wei,Zhu Xin-kai,Guo Wen-shan,Xu Xin-gang,Wang Ji-hua,Li Xin-chuan. 2012

[19]Using new hyperspectral index to estimate leaf chlorophyll content in winter wheat. Xu, Xingang,Song, Xiaoyu,Li, Cunjun,Wang, Jihua. 2012

[20]Leaf Area Index Estimation Using Vegetation Indices Derived From Airborne Hyperspectral Images in Winter Wheat. Xie, Qiaoyun,Huang, Wenjiang,Liang, Dong,Huang, Linsheng,Zhang, Dongyan,Chen, Pengfei,Wu, Chaoyang,Yang, Guijun,Zhang, Jingcheng. 2014

作者其他论文 更多>>