Monitoring the ratio of leaf carbon to nitrogen in winter wheat with hyperspectral measurements
文献类型: 外文期刊
作者: Xu, Xin-gang 1 ; Yang, Xiao-dong 1 ; Gu, Xiao-he 1 ; Yang, Hao 1 ; Feng, Hai-kuan 1 ; Yang, Gui-jun 1 ; Song, Xiao-yu 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
关键词: leaf C/N;spectral index;winter wheat;gray relational analysis;branch-and-bound method
期刊名称:REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVII
ISSN: 0277-786X
年卷期: 2015 年 9637 卷
页码:
收录情况: SCI
摘要: In crop leaves the ratio of carbon to nitrogen (C/N), defined as ratio of LCC (leaf carbon concentration) to LNC (leaf nitrogen concentration), is a good indicator that can synthetically evaluate the balance of carbon and nitrogen, nutrient status in crop plants. Hence it is very important how to monitor changes of leaf C/N effectively and in real time for nutrient diagnosis and growing management of crops in fields. In consideration of the close relationships between chlorophyll, nitrogen (N) and C/N, some typical indices aimed at N estimation were tested to estimate leaf C/N in winter wheat as well as several indices aimed chlorophyll evaluation. The multi-temporal hyperspectral data from the flag-leaf, anthesis, filling, and milk-ripe stages were obtained to calculate these selected spectral indices for evaluating C/N in winter wheat. The results showed that some tested indices such as MCARI/OSAVI2, MTCI and Rep-Le had the better performance of estimating C/N. In addition, GRA (gray relational analysis) and Branch-and-Bound method were also used along with spectral indices sensitive to C/N for improving the accuracy of monitoring C/N in winter wheat, and obtained the better results with R-2 of 0.74, RMSE of 0.991. It indicates that monitoring of leaf C/N in winter wheat with hyperspectral reflectance measurements appears very potential.
- 相关文献
作者其他论文 更多>>
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response
-
A novel framework to assess apple leaf nitrogen content: Fusion of hyperspectral reflectance and phenology information through deep learning
作者:Chen, Riqiang;Liu, Wenping;Zhou, Yan;Zhang, Chengjian;Chen, Riqiang;Yang, Guijun;Zhang, Chengjian;Han, Shaoyu;Meng, Yang;Feng, Haikuan;Chen, Riqiang;Liu, Wenping;Zhou, Yan;Yang, Hao;Jin, Xiuliang;Meng, Yang;Feng, Haikuan;Zhai, Changyuan;Han, Shaoyu
关键词:Apple; Leaf Nitrogen Content (LNC); Phenology; DNN; Data -Processing
-
Pretrained Deep Learning Networks and Multispectral Imagery Enhance Maize LCC, FVC, and Maturity Estimation
作者:Hu, Jingyu;Feng, Hao;Shen, Jianing;Wang, Jian;Guo, Wei;Qiao, Hongbo;Yue, Jibo;Wang, Qilei;Liu, Yang;Liu, Yang;Feng, Haikuan;Yang, Hao;Niu, Qinglin;Niu, Qinglin
关键词:unmanned aerial vehicle; crop leaf chlorophyll content; fractional vegetation cover; maturity; deep learning; ensemble learning; maize
-
Real-time monitoring of maize phenology with the VI-RGS composite index using time-series UAV remote sensing images and meteorological data
作者:Feng, Ziheng;Ma, Xinming;Feng, Ziheng;Cheng, Zhida;Ren, Lipeng;Liu, Bowei;Zhang, Chengjian;Zhao, Dan;Sun, Heguang;Feng, Haikuan;Long, Huiling;Xu, Bo;Yang, Hao;Song, Xiaoyu;Yang, Guijun;Zhao, Chunjiang
关键词:UAV; Real-time; Composite index; Maize phenology; BBCH
-
Removal of canopy shadows improved retrieval accuracy of individual apple tree crowns LAI and chlorophyll content using UAV multispectral imagery and PROSAIL model
作者:Zhang, Chengjian;Chen, Zhibo;Chen, Riqiang;Qi, Ning;Zhang, Wenjie;Yang, Hao;Zhang, Chengjian;Yang, Guijun;Xu, Bo;Feng, Haikuan;Chen, Riqiang;Qi, Ning;Zhang, Wenjie;Zhao, Dan;Yang, Hao;Zhao, Dan;Cheng, Jinpeng
关键词:Leaf area index (LAI); Leaf chlorophyll content (LCC); Canopy chlorophyll content (CCC); Broad -band vegetation indexes (VIs); A hybrid inversion model
-
Deep learning in cropland field identification: A review
作者:Xu, Fan;Yao, Xiaochuang;Zhang, Kangxin;Feng, Quanlong;Yan, Shuai;Gao, Bingbo;Yang, Jianyu;Zhang, Chao;Zhu, Dehai;Yao, Xiaochuang;Feng, Quanlong;Gao, Bingbo;Yang, Jianyu;Zhang, Chao;Zhu, Dehai;Yang, Hao;Li, Ying;Li, Shaoshuai;Lv, Yahui;Ye, Sijing
关键词:Cropland field identification; Deep learning; Remote sensing; Bibliometric analysis; Sample dataset



