您好,欢迎访问北京市农林科学院 机构知识库!

A maize bundle sheath defective mutation mapped on chromosome 1 between SSR markers umc1395 and umc1603

文献类型: 外文期刊

作者: Pan Yu 1 ; Chen Xu-qing 1 ; Xie Hua 1 ; Deng Lei 3 ; Li Xiang-long 1 ; Zhang Xiao-dong 1 ; Han Li-xin 1 ; Yang Feng-ping; 1 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Agrobiotechnol Res Ctr, Beijing 100097, Peoples R China

2.Southwest Univ, Minist Educ, Key Lab Hort Sci Southern Mt Reg, Coll Hort & Landscape Architecture, Chongqing 400715, Peoples R China

3.Chongqin

关键词: maize;bsd-pg;SLAF;SSR assossiation analysis;fine mapping

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2015 年 14 卷 10 期

页码:

收录情况: SCI

摘要: The bsd-pg (bundle sheath defective pale green) mutant is a novel maize mutation, controlled by a single recessive gene, which was isolated from offspring of maize plantlets regenerated from tissue callus of the maize inbred line 501. The characterization was that the biogenesis and development of the chloroplasts was mainly interfered in bundle sheath cells rather than in mesophyll cells. For mapping the bsd-pg, an F-2 population was derived from a cross between the mutant bsd-pg and an inbred line Xianzao 17. Using specific locus amplified fragment sequencing (SLAF-Seq) technology, a total of 5 783 polymorphic SLAFs were analysed with 1 771 homozygous alleles between maternal and paternal parents. There were 49 SLAFs, which had a ratio of paternal to maternal alleles of 2:1 in bulked normal lines, and three trait-related candidate regions were obtained on chromosome 1 with a size of 3.945 Mb. For the fine mapping, new simple sequence repeats (SSRs) markers were designed by utilizing information of the B73 genome and the candidate regions were localized a size of 850 934 bp on chromosome 1 between umc1603 and umc1395, including 35 candidate genes. These results provide a foundation for the cloning of bsd-pg by map-based strategy, which is essential for revealing the functional differentiation and coordination of the two cell types, and helps to elucidate a comprehensive understanding of the C4 photosynthesis pathway and related processes in maize leaves.

  • 相关文献

[1]甜樱桃高密度连锁图谱的构建. 王晶,闫国华,张晓明,周宇,张开春. 2014

[2]Analysis of Genetic Diversity and Population Structure of Maize Landraces from the South Maize Region of China. Liu Zhi-zhai,Guo Rong-hua,Wang Rong-huan,Shi Yun-su,Song Yan-chun,Wang Tian-yu,Li Yu,Liu Zhi-zhai,Cai Yi-lin,Guo Rong-hua,Cao Mo-ju,Zhao Jiu-ran,Wang Feng-ge,Wang Rong-huan. 2010

[3]Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Zhang, Danfeng,Liu, Shuangshuang,Rao, Liqun,Wan, Xiangyuan,Zhang, Danfeng,Wu, Suowei,An, Xueli,Xie, Ke,Dong, Zhenying,Zhu, Taotao,Wan, Xiangyuan,Xu, Liwen,Zhao, Jiuran,Zhang, Danfeng,Zhou, Yan,Fang, Wen,Liu, Shensi,Liu, Shuangshuang,Li, Jinping. 2018

[4]Nitrogen Status Diagnosis by Using Digital Photography Analysis for Organic Fertilized Maize. Sun Qin-ping,Li Ji-jin,Zou Guo-yuan,Xiang Cheng-cai,Luo Yi-ming,Liu Ben-sheng. 2010

[5]Development and characterization of a core set of SSR markers for fingerprinting analysis of Chinese maize varieties. Wang, Feng-Ge,Tian, Hong-Li,Zhao, Jiu-Ran,Yi, Hong-Mei,Wang, Lu,Song, Wei. 2011

[6]Evaluation of the genetic diversity and genome-wide linkage disequilibrium of Chinese maize inbred lines. Wang, Ming,Zhang, Xiaobo,Zheng, Yonglian,Zhao, Jiuran,Song, Wei. 2011

[7]Comparative Proteomics of Contrasting Maize, Genotypes Provides Insights into Salt-Stress Tolerance Mechanisms. Luo, Meijie,Zhao, Yanxin,Wang, Yuandong,Shi, Zi,Zhang, Panpan,Zhang, Yunxia,Song, Wei,Zhao, Jiuran. 2018

[8]THREE-DIMENSIONAL VISUALIZATION OF VASCULAR BUNDLES IN STEM NODES OF MAIZE. Zhang, Ying,Du, Jianjun,Guo, Xinyu,Yan, Weiping,Zhao, Chunjiang. 2017

[9]Spatial variation of attainable yield and fertilizer requirements for maize at the regional scale in China. Xu, Xinpeng,Xu, Xinpeng,He, Ping,Zhang, Jiajia,Zhou, Wei,He, Ping,Pampolino, Mirasol F.,Johnston, Adrian M..

[10]Microbacterium zeae sp nov., an endophytic bacterium isolated from maize stem. Gao, Jun-lian,Wang, Xu-ming,Lv, Fan-yang,Sun, Jian-guang,Sun, Pengbo.

[11]Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Huang, Ni,Niu, Zheng,Zhan, Yulin,Xu, Shiguang,Wu, Chaoyang,Gao, Shuai,Hou, Xuehui,Cai, Dewen,Huang, Ni,Xu, Shiguang,Hou, Xuehui,Cai, Dewen,Tappert, Michelle C.,Huang, Wenjiang.

[12]Identification and characterization of a novel adenine phosphoribosyltransferase gene (ZmAPT2) from maize (Zea mays L.). Wu, Suowei,Yu, Zhanwang,Li, Weihua,Yang, Qingkai,Ye, Chunjiang,Sun, Yan,Jin, Demin,Wang, Bin,Wu, Suowei,Li, Weihua,Yang, Qingkai,Wang, Fengge,Zhao, Jiuran.

[13]Concentration and dissipation of chlorantraniliprole and thiamethoxam residues in maize straw, maize, and soil. Zheng, Yongquan,He, Min,Jia, Hong C.,Song, Dan.

[14]Rhizobium wenxiniae sp nov., an endophytic bacterium isolated from maize root. Gao, Jun-lian,Wang, Xu-ming,Sun, Pengbo,Lv, Fan-yang,Mao, Xiao-jie,Sun, Jian-guang.

[15]Using satellite multispectral imagery for damage mapping of armyworm (Spodoptera frugiperda) in maize at a regional scale. Zhang, Jingcheng,Yuan, Lin,Yang, Guijun,Chen, Liping,Zhao, Chunjiang,Zhang, Jingcheng,Yuan, Lin,Yang, Guijun,Chen, Liping,Zhao, Chunjiang,Zhang, Jingcheng,Yuan, Lin,Yang, Guijun,Chen, Liping,Zhao, Chunjiang,Zhang, Jingcheng,Yuan, Lin,Yang, Guijun,Chen, Liping,Zhao, Chunjiang,Huang, Yanbo.

[16]Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Zheng, Jun,Liu, Yunjun,Wang, Guoying,Zheng, Jun,Liu, Yunjun,Wang, Guoying,Fu, Junjie,Gou, Mingyue,Huai, Junling,Jian, Min,Guo, Xiying,Dong, Zhigang,Wang, Guoying,Huang, Quansheng,Wang, Hongzhi.

[17]Gas Chromatography-Mass Spectroscopy Analysis of Carbofuran and Its Metabolite 3-Hydroxy-carbofuran in Maize and Soil in Field. Chen, Li,Jia, Chonghong,Zhao, Ercheng,He, Min,Yu, Pingzhong,Chen, Li. 2011

[18]MONITORING MODEL OF CORN LODGING BASED ON SENTINEL-1 RADAR IMAGE. Han, Dong,Yang, Hao,Yang, Guijun,Han, Dong,Qiu, Chunxia. 2017

[19]POPULATION STRUCTURE AND GENETIC DIVERSITY OF MAIZE LANDRACES FROM THE SOUTHWEST MAIZE REGION OF CHINA. Liu, Z. Z.,Guo, R. H.,Wang, R. H.,Shi, Y. S.,Song, Y. C.,Wang, T. Y.,Li, Y.,Liu, Z. Z.,Cai, Y. L.,Guo, R. H.,Cao, M. J.,Zhao, J. R.,Wang, F. G.,Wang, R. H.. 2009

[20]Characterization and expression analysis of six MADS-box genes in maize (Zea mays L.). Zhang, Zhongbao,Li, Huiyong,Zhang, Dengfeng,Liu, Yinghui,Fu, Jing,Shi, Yunsu,Song, Yanchun,Wang, Tianyu,Li, Yu,Zhang, Zhongbao,Liu, Yinghui. 2012

作者其他论文 更多>>