您好,欢迎访问北京市农林科学院 机构知识库!

Characteristic Wavelengths Selection of Soluble Solids Content of Pear Based on NIR Spectral and LS-SVM

文献类型: 外文期刊

作者: Fan Shu-xiang 1 ; Huang Wen-qian 2 ; Li Jiang-bo 2 ; Zhao Chun-jiang 1 ; Zhang Bao-hua 2 ;

作者机构: 1.Northwest Agr & Forestry Univ, Coll Mech & Elect Engn, Yangling 712100, Peoples R China

2.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China

关键词: NIR spectroscopy;Characteristic wavelengths;Least squares-support vector machine;Soluble solids content;Pear

期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )

ISSN: 1000-0593

年卷期: 2014 年 34 卷 8 期

页码:

收录情况: SCI

摘要: To improve the precision and robustness of the NIR model of the soluble solid content (SSC) on pear. The total number of 160 pears was for the calibration (n=120) and prediction (n=40). Different spectral pretreatment methods, including standard normal variate (SNV) and multiplicative scatter correction (MSC) were used before further analysis. A combination of genetic algorithm (GA) and successive projections algorithm (SPA) was proposed to select most effective wavelengths after uninformative variable elimination (UVE) from original spectra, SNV pretreated spectra and MSC pretreated spectra respectively. The selected variables were used as the inputs of least squares-support vector machine (LS-SVM) model to build models for determining the SSC of pear. The results indicated that LS-SVM model built using SNVE-UVE-GA-SPA on 30 characteristic wavelengths selected from full-spectrum which had 3112 wavelengths achieved the optimal performance. The correlation coefficient (R-p) and root mean square error of prediction (RMSEP) for prediction sets were 0. 956, 0. 271 for SSC. The model is reliable and the predicted result is effective. The method can meet the requirement of quick measuring SSC of pear and might be important for the development of portable instruments and online monitoring.

  • 相关文献

[1]A comparative study for the quantitative determination of soluble solids content, pH and firmness of pears by Vis/NIR spectroscopy. Li, Jiangbo,Huang, Wenqian,Zhao, Chunjiang,Zhang, Baohua.

[2]Prediction of Soluble Solids Content and Firmness of Pears Using Hyperspectral Reflectance Imaging. Fan, Shuxiang,Huang, Wenqian,Guo, Zhiming,Zhang, Baohua,Zhao, Chunjiang,Fan, Shuxiang,Zhao, Chunjiang.

[3]Reason Analysis of Inadaptability and Its Correction Research on the Authenticity Identification Model of West Lake Longjing Tea Based on LVF Micro-NIR Spectrometer. Wang Dong,Pan Li-gang,Wang Ji-hua,Li An,Jin Xin-xin,Ma Zhi-hong,Zhu Ye-wei. 2014

[4]PREDICTION OF THE TOTAL STARCH AND AMYLOSE CONTENT IN BARLEY USING NEAR-INFRARED REFLECTANCE SPECTROSCOPY. Ping, Hua,Wang, Jihua,Ren, Guixing. 2013

[5]Effectively Predicting Soluble Solids Content in Apple Based on Hyperspectral Imaging. Huang Wen-qian,Li Jiang-bo,Chen Li-ping,Guo Zhi-ming. 2013

[6]Comparative analysis of models for robust and accurate evaluation of soluble solids content in 'Pinggu' peaches by hyperspectral imaging. Chen, Liping. 2017

[7]Near-Infrared Spectra Combining with CARS and SPA Algorithms to Screen the Variables and Samples for Quantitatively Determining the Soluble Solids Content in Strawberry. Li Jiang-bo,Guo Zhi-ming,Huang Wen-qian,Zhang Bao-hua,Zhao Chun-jiang. 2015

[8]Assessment of Influence Detective Position Variability on Precision of Near Infrared Models for Soluble Solid Content of Watermelon. Qian Man,Fan Shu-xiang,Chen Li-ping,Qian Man,Huang Wen-qian,Wang Qing-yan,Fan Shu-xiang,Zhang Bao-hua,Chen Li-ping,Qian Man,Huang Wen-qian,Wang Qing-yan,Fan Shu-xiang,Zhang Bao-hua,Chen Li-ping,Qian Man,Huang Wen-qian,Wang Qing-yan,Fan Shu-xiang,Zhang Bao-hua,Chen Li-ping. 2016

[9]Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data. Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi.

[10]Variable Selection in Visible and Near-Infrared Spectral Analysis for Noninvasive Determination of Soluble Solids Content of 'Ya' Pear. Li, Jiangbo,Huang, Wenqian,Chen, Liping,Fan, Shuxiang,Zhang, Baohua,Guo, Zhiming,Zhao, Chunjiang,Li, Jiangbo.

[11]Application of Characteristic NIR Variables Selection in Portable Detection of Soluble Solids Content of Apple by Near Infrared Spectroscopy. Fan Shu-xiang,Zhao Chun-jiang,Fan Shu-xiang,Huang Wen-qian,Li Jiang-bo,Guo Zhi-ming,Zhao Chun-jiang. 2014

[12]Effect of spectrum measurement position variation on the robustness of NIR spectroscopy models for soluble solids content of apple. Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng.

[13]Using Vis/NIR Diffuse Transmittance Spectroscopy and Multivariate Analysis to Predicate Soluble Solids Content of Apple. Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang,Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang,Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang,Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang.

[14]Risk assessment and ranking of pesticide residues in Chinese pears. Li Zhi-xia,Nie Ji-yun,Yan Zhen,Xu Guo-feng,Kuang Li-xue,Pan Li-gang,Pan Li-gang,Xie Han-zhong,Wang Cheng,Liu Chuan-de,Zhao Xu-bo,Guo Yong-ze. 2015

[15]Application of Long-Wave Near Infrared Hyperspectral Imaging for Measurement of Soluble Solid Content (SSC) in Pear. Li, Jiangbo,Tian, Xi,Huang, Wenqian,Zhang, Baohua,Fan, Shuxiang,Li, Jiangbo,Tian, Xi,Huang, Wenqian,Zhang, Baohua,Fan, Shuxiang,Li, Jiangbo,Huang, Wenqian,Li, Jiangbo,Huang, Wenqian.

作者其他论文 更多>>