Characteristic Wavelengths Selection of Soluble Solids Content of Pear Based on NIR Spectral and LS-SVM
文献类型: 外文期刊
作者: Fan Shu-xiang 1 ; Huang Wen-qian 2 ; Li Jiang-bo 2 ; Zhao Chun-jiang 1 ; Zhang Bao-hua 2 ;
作者机构: 1.Northwest Agr & Forestry Univ, Coll Mech & Elect Engn, Yangling 712100, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
关键词: NIR spectroscopy;Characteristic wavelengths;Least squares-support vector machine;Soluble solids content;Pear
期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )
ISSN: 1000-0593
年卷期: 2014 年 34 卷 8 期
页码:
收录情况: SCI
摘要: To improve the precision and robustness of the NIR model of the soluble solid content (SSC) on pear. The total number of 160 pears was for the calibration (n=120) and prediction (n=40). Different spectral pretreatment methods, including standard normal variate (SNV) and multiplicative scatter correction (MSC) were used before further analysis. A combination of genetic algorithm (GA) and successive projections algorithm (SPA) was proposed to select most effective wavelengths after uninformative variable elimination (UVE) from original spectra, SNV pretreated spectra and MSC pretreated spectra respectively. The selected variables were used as the inputs of least squares-support vector machine (LS-SVM) model to build models for determining the SSC of pear. The results indicated that LS-SVM model built using SNVE-UVE-GA-SPA on 30 characteristic wavelengths selected from full-spectrum which had 3112 wavelengths achieved the optimal performance. The correlation coefficient (R-p) and root mean square error of prediction (RMSEP) for prediction sets were 0. 956, 0. 271 for SSC. The model is reliable and the predicted result is effective. The method can meet the requirement of quick measuring SSC of pear and might be important for the development of portable instruments and online monitoring.
- 相关文献
作者其他论文 更多>>
-
Estimation of Leaf and Canopy Scale Tea Polyphenol Content Based on Characteristic Spectral Parameters
作者:Duan Dan-dan;Liu Zhong-hua;Duan Dan-dan;Zhao Chun-jiang;Zhao Yu;Wang Fan;Zhao Chun-jiang;Zhao Yu;Wang Fan
关键词:Tea polyphenols; Hyperspectral data; Partial least squares; Random forest; Multiple linear regression
-
Online Detection of Sugar Content in Watermelon Based on Full-Transmission Visible and Near-Infrared Spectroscopy
作者:Wang He-gong;Wang He-gong;Huang Wen-qian;Cai Zhong-lei;Yan Zhong-wei;Li Sheng;Li Jiang-bo
关键词:Full-transmittance spectrum; Online detection; Watermelon; Sugar content; Modeling
-
Research on the Classification of Yingde Tea Plantations Based on Time Series Sentinel-2 Images
作者:Chen Pan-pan;Ren Yan-min;Zhao Chun-jiang;Li Cun-jun;Liu Yu
关键词:Tea plantation; Sentinel-2; Temporal features; Machine learning; Classification
-
Estimation of Potato Above-Ground Biomass Based on VGC-AGB Model and Hyperspectral Remote Sensing
作者:Feng Hai-kuan;Zhao Chun-jiang;Feng Hai-kuan;Fan Yi-guang;Yang Gui-jun;Zhao Chun-jiang;Yue Ji-bo
关键词:VGC-AGB model; Hyperspectral remote sensing; Potato; Aboveground biomass (AGB)
-
Monitoring of Nitrogen Content in Winter Wheat Based on UAV Hyperspectral Imagery
作者:Feng Hai-kuan;Fan Yi-guang;Tao Hui-lin;Yang Gui-jun;Zhao Chun-jiang;Feng Hai-kuan;Zhao Chun-jiang;Yang Fu-qin
关键词:Unmanned aerial vehicle; Winter wheat; Hyperspectral; Nitrogen content; Stepwise regression; Spectral feature parameters
-
Classification Method of Coal and Gangue Based on Hyperspectral Imaging Technology
作者:Li Lian-jie;Fan Shu-xiang
关键词:Hyperspectral image; Coal; Gangue; Black background; Nondestructive detection
-
Detecting Green Plants Based on Fluorescence Spectroscopy
作者:Wang Ai-chen;Gao Bin-jie;Zhao Chun-jiang;Wang Miao-lin;Yan Shu-gang;Li Lin;Wei Xin-hua;Zhao Chun-jiang;Xu Yi-fei;Wang Ai-chen;Xu Yi-fei
关键词:Fluorescence spectroscopy; Green plant; Target detection; Precision agriculture; Site-specific spraying



