您好,欢迎访问北京市农林科学院 机构知识库!

Effect of Biochars from Rice Husk, Bran, and Straw on Heavy Metal Uptake by Pot-Grown Wheat Seedling in a Historically Contaminated Soil

文献类型: 外文期刊

作者: Zheng, Ruilun 1 ; Chen, Zheng 2 ; Cai, Chao 3 ; Wang, Xiaohui 2 ; Huang, Yizong 2 ; Xiao, Bo 1 ; Sun, Guoxin 2 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Res & Dev Ctr Grasses & Environm, Beijing 100097, Peoples R China

2.Chinese Acad Sci, State Key Lab Urban & Reg Ecol, Res Ctr Ecoenvironm Sci, Beijing 100085, Peoples R China

3.Chinese Acad Sci, Inst Urban Environm, Xiamen 361021, Peoples R China

关键词: Biochar;Heavy metal;Contaminated soil;Soil amendment;Wheat

期刊名称:BIORESOURCES ( 影响因子:1.614; 五年影响因子:1.923 )

ISSN: 1930-2126

年卷期: 2013 年 8 卷 4 期

页码:

收录情况: SCI

摘要: The effect of biochar amendment of a multi-element contaminated soil on the transfer and accumulation of Cd, Zn, Pb, and As in wheat was investigated in this study. Addition of biochars from rice residues (straw, husk, and bran) significantly decreased shoot Cd, Zn, and Pb concentrations by up to 71%, 37%, and 60%, respectively, but increased As by up to 199%. Biochar additions decreased the NH4NO3-extractable concentrations of Cd, Zn, and Pb in soil by 23 to 81%, 29 to 94%, and 31 to 92%, respectively, especially straw-char treatment, though biochar treatment increased the concentration of As by 64 to 2650%. A decrease in biochar particle size generally favored the immobilization of Cd, Zn, and Pb in soil and reductions in their accumulation in wheat shoot, but this was reversed for As. Increases of up to 21%, 70%, 59%, and 40% in shoot biomass, root length, and shoot P and K levels, respectively, of wheat seedlings were caused by biochar amendments. Biochar has the potential to reduce accumulations of Cd, Zn, and Pb in wheat shoot and improve its growth.

  • 相关文献

[1]The influence of particle size and feedstock of biochar on the accumulation of Cd, Zn, Pb, and As by Brassica chinensis L.. Zheng, Ruilun,Li, Cui,Chen, Jie,Wu, Juying,Wang, Qinghai,Sun, Guoxin,Xie, Zubin.

[2]Effects of biochar on nitrogen transformation and heavy metals in sludge composting. Liu, Wei,Huo, Rong,Liang, Shuxuan,Xu, Junxiang,Li, Jijin,Zhao, Tongke,Wang, Shutao.

[3]Can phosphate compounds be used to reduce the plant uptake of Pb and resist the Pb stress in Pb-contaminated soils?. Chen Shibao,Ma Yibing,Chen Shibao,Ma Yibing,Chen Li,Huang Yizong.

[4]Relative influence of sediment variables on mangrove community assembly in Leizhou Peninsula, China. Liu, Jing,Ma, Keming,Qu, Laiye,Liu, Jing.

[5]Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?. Xu, Li,Cao, Shanshan,Wang, Jihua,Lu, Anxiang,Xu, Li,Cao, Shanshan,Wang, Jihua,Lu, Anxiang. 2016

[6]Modeling of Chromium, Copper, Zinc, Arsenic and Lead Using Portable X-ray Fluorescence Spectrometer Based on Discrete Wavelet Transform. Li, Fang,Lu, Anxiang,Wang, Jihua,Li, Fang,Lu, Anxiang,Wang, Jihua,Lu, Anxiang,Wang, Jihua. 2017

[7]Determination of Cr, Zn, As and Pb in Soil by X-Ray Fluorescence Spectrometry Based on a Partial Least Square Regression Model. Lu, Anxiang,Wang, Jihua,Pan, Ligang,Lu, Anxiang,Qin, Xiangyang,Wang, Jihua,Zhu, Dazhou,Sun, Jiang. 2011

[8]Establishment and Improvement of Portable X-Ray Fluorescence Spectrometer Detection Model Based on Wavelet Transform. Li Fang,Wang Ji-hua,Li Fang,Wang Ji-hua,Lu An-xiang,Han Ping. 2015

[9]Determination of Cr, Cu, Zn, Pb and As in Soil by Field Portable X-Ray Fluorescence Spectrometry. Lu An-xiang,Wang Ji-hua,Pan Li-gang,Han Ping,Lu An-xiang,Wang Ji-hua,Pan Li-gang,Han Ping,Han Ying. 2010

[10]Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Lu, Anxiang,Zhang, Shuzhen,Lu, Anxiang,Wang, Jihua,Han, Ping,Qin, Xiangyang,Wang, Kaiyi.

[11]Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment - a field experiment in Hunan, China. Zheng, Ruilun,Chen, Zheng,Sun, Guoxin,Zheng, Ruilun,Cai, Chao,Huang, Qing,Tie, Baiqing,Liu, Xiaoli,Lei, Ming,Reid, Brian J.,Baltrenaite, Edita.

[12]Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. Pan, Ligang,Yu, Xiangyang,Ying, Guangguo,Kookana, Rai S.,Ying, Guangguo,Pan, Ligang.

[13]Mitigating cadmium accumulation in greenhouse lettuce production using biochar. Zheng, Ruilun,Li, Cui,Wang, Qinghai,Sun, Guoxin,Reid, Brian J.,Xie, Zubin,Zhang, Bo.

[14]Construction, Characterization, and Expressed Sequence Tag (EST) Analysis of Normalized cDNA Library of Thermo-Photoperiod-Sensitive Genic Male Sterile (TPGMS) Wheat from Spike Developmental Stages. Yang, D.,Tang, Z. H.,Zheng, Y. L.,Tang, Z. H.,Zhang, L. P.,Zhao, C. P..

[15]Identification and characterization of a subset of microRNAs in wheat (Triticum aestivum L.). Su, Chun,Gao, Shiqing,Tang, Yimiao,Zhao, Changping,Li, Lei,Su, Chun,Yang, Xiaozeng,Li, Lei.

[16]Estimating leaf SPAD values of freeze-damaged winter wheat using continuous wavelet analysis. Wang, Hui-fang,Huo, Zhi-guo,Zhou, Guang-sheng,Wu, Li,Wang, Hui-fang,Liao, Qin-hong,Feng, Hai-kuan,Liao, Qin-hong.

[17]Association mapping of agronomic traits on chromosome 2A of wheat. Yao, Ji,Liu, Lihua,Zheng, Yonglian,Yao, Ji,Wang, Lixin,Liu, Lihua,Zhao, Changping.

[18]TaOPR2 encodes a 12-oxo-phytodienoic acid reductase involved in the biosynthesis of jasmonic acid in wheat (Triticum aestivum L.). Wang, Yukun,Yuan, Guoliang,Yuan, Shaohua,Duan, Wenjing,Wang, Peng,Bai, Jianfang,Zhang, Fengting,Gao, Shiqing,Zhang, Liping,Zhao, Changping,Wang, Yukun,Yuan, Guoliang,Yuan, Shaohua,Duan, Wenjing,Wang, Peng,Bai, Jianfang,Zhang, Fengting,Gao, Shiqing,Zhang, Liping,Zhao, Changping,Duan, Wenjing,Wang, Peng.

[19]Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response. Li, Xueyin,Ma, Lingjian,Feng, Biane,Zhang, Fengjie,Tang, Yimiao,Zhang, Liping,Zhao, Changping,Gao, Shiqing,Feng, Biane,Zhang, Fengjie. 2016

[20]Research on Rapid and Non-Destructive Identification of Aging Wheat Based on ATR-Terahertz Spectroscopy Combined with PLS-DA. Wang Dong,Pan Li-gang,Li An,Jin Xin-xin,Ma Zhi-hong,Wang Ji-hua,Wang Dong,Pan Li-gang,Li An,Jin Xin-xin,Ma Zhi-hong,Wang Ji-hua,Liu Long-hai,Jiang, Justin. 2016

作者其他论文 更多>>