文献类型: 外文期刊
作者: Yuan, Lin 1 ; Zhang, Jingcheng 1 ; Zhao, Jinling 1 ; Huang, Linsheng 1 ; Yang, Xiaodong 1 ; Wang, Jihua 1 ;
作者机构: 1.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
2.Zhejiang Univ, Inst Agr Remote Sensing & Informat Syst Applicat, Hangzhou 310029, Zhejiang, Peoples R China
3.Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Peoples R China
关键词: Winter wheat;Powdery mildew;HJ-CCD;Spectral information divergence (SID);Spectral angle mapper (SAM)
期刊名称:OPTIK ( 影响因子:2.443; 五年影响因子:1.955 )
ISSN: 0030-4026
年卷期: 2013 年 124 卷 21 期
页码:
收录情况: SCI
摘要: Powdery mildew is one of the most serious diseases, which has a significant impact on the production of winter wheat. As an effective alternative to traditional sampling methods, remote sensing can be a useful tool in disease detection. This study examines the potential of a moderate resolution multispectral satellite image in disease monitoring at regional scale. At the suburban area around Beijing, a large size ground survey sample (n=90) and the corresponding HJ-CCD image were acquired at the grain filling stage of winter wheat. A number of spectral features were found to be sensitive to powdery mildew through an independent t-test. Based on these spectral features, classification models were established using both spectral information divergence (SID) and spectral angle mapper (SAM), respectively. The results showed that the overall accuracies of disease identification and severity estimation were moderate. The estimation of normal and seriously infected samples yielded higher accuracies than slightly infected samples. The single phase HJ-CCD can only be used for locating the infected areas of powdery mildew, whereas is unable to discriminate the severity levels of disease. The presence of several stressors and disturbances other than disease is a possible reason of the unsatisfactory performance of disease monitoring models. Therefore, the integration of multi-phase onboard data and some relevant ancillary data is necessary to improve the accuracy and reliability of disease monitoring at regional scale. (C) 2013 Elsevier GmbH. All rights reserved.
- 相关文献
作者其他论文 更多>>
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Estimation of SOC using VNIR and MIR hyperspectral data based on spectral-to-image transforming and multi-channel CNN
作者:Tang, Aohua;Yang, Guijun;Li, Zhenhong;Chen, Weinan;Zhang, Jing;Tang, Aohua;Yang, Guijun;Pan, Yuchun;Liu, Yu;Long, Huiling;Chen, Weinan;Zhang, Jing;Yang, Yue;Yang, Xiaodong;Xu, Bo;Yang, Yue
关键词:MIR spectral; Multi-channel-CNN; SIT; Soil organic carbon; VNIR spectral
-
The giant genome of lily provides insights into the hybridization of cultivated lilies
作者:Liang, Yuwei;Gao, Qiang;Zhang, Liangsheng;Li, Fan;Duan, Qing;Li, Shenchong;Jin, Chunlian;Zhang, Peihua;Wang, Jihua;Li, Fan;Duan, Qing;Li, Shenchong;Jin, Chunlian;Zhang, Peihua;Wang, Jihua;Du, Yunpeng;Pan, Wenqiang;Zhang, Xiuhai;Zhang, Mingfang;Wu, Jian;Pan, Wenqiang;Wang, Shaokun;Song, Xiaoming;Zhong, Linlin;Zhang, Fan;Li, Yan;Wang, Zhiwei;Li, Danqing;Gu, Yang;Chen, Zhong-Hua;Chen, Zhong-Hua;Mayer, Klaus F. X.;Mayer, Klaus F. X.;Zhou, Xiaofan;Zhang, Liangsheng;Zhang, Liangsheng
关键词:
-
Navigation line detection algorithm for corn spraying robot based on improved LT-YOLOv10s
作者:Diao, Zhihua;Ma, Shushuai;Li, Xingyi;Zhao, Suna;He, Yan;Li, Jiangbo;Zhang, Jingcheng;Zhang, Baohua;Jiang, Liying;Jiang, Liying
关键词:Deep learning; Corn spraying robot; Navigation line detection; Lightweight network
-
Identification of seed maize fields from hyperspectral imagery by fusion of spectral and spatial features
作者:Cheng, Jinpeng;Cao, Xiaoyu;Wu, Qiang;Ma, Xinming;Xiong, Shuping;Cheng, Jinpeng;Yang, Hao;Zhang, Na;Yang, Guijun;Zhang, Na;Huang, Linsheng;Yan, Zhiyu;Wang, Hongbin;Yang, Guijun
关键词:Hyperspectral image classification; Seed maize; Class means matrix clustering; Morphology profiles; Machine learning
-
ICFMNet: an automated segmentation and 3D phenotypic analysis pipeline for plant, spike, and flag leaf type of wheat
作者:Xiao, Pengliang;Huang, Linsheng;Liang, Dong;Xiao, Pengliang;Wu, Sheng;Wen, Weiliang;Wang, Chuanyu;Lu, Xianju;Ge, Xiaofen;Li, Wenrui;Guo, Xinyu;Xiao, Pengliang;Wu, Sheng;Wen, Weiliang;Wang, Chuanyu;Lu, Xianju;Ge, Xiaofen;Li, Wenrui;Guo, Xinyu;Gao, Shiqing
关键词:3D phenotypic automated analysis; Semantic segmentation; Instance segmentation; Deep learning



