您好,欢迎访问北京市农林科学院 机构知识库!

Detection of defects on apple using B-spline lighting correction method

文献类型: 外文期刊

作者: Li, Jiangbo 1 ; Huang, Wenqian 1 ; Guo, Zhiming 1 ;

作者机构: 1.Beijing Res Ctr Intelligent Equipment Agr, Beijing, Peoples R China

关键词: machine vision;image processing;defect detection;apples;lighting correction

期刊名称:PIAGENG 2013: IMAGE PROCESSING AND PHOTONICS FOR AGRICULTURAL ENGINEERING

ISSN: 0277-786X

年卷期: 2013 年 8761 卷

页码:

收录情况: SCI

摘要: To effectively extract defective areas in fruits, the uneven intensity distribution that was produced by the lighting system or by part of the vision system in the image must be corrected. A methodology was used to convert non-uniform intensity distribution on spherical objects into a uniform intensity distribution. A basically plane image with the defective area having a lower gray level than this plane was obtained by using proposed algorithms. Then, the defective areas can be easily extracted by a global threshold value. The experimental results with a 94.0% classification rate based on 100 apple images showed that the proposed algorithm was simple and effective. This proposed method can be applied to other spherical fruits.

  • 相关文献

[1]Automatic detection of defective apples using NIR coded structured light and fast lightness correction. Zhang, Chi,Zhao, Chunjiang,Huang, Wenqian,Wang, Qingyan,Liu, Shenggen,Li, Jiangbo,Guo, Zhiming.

[2]A Measurement Method on Pesticide Residues of Apple Surface Based on Laser-Induced Breakdown Spectroscopy. Ma, Feiyu,Dong, Daming.

[3]Multispectral detection of skin defects of bi-colored peaches based on vis-NIR hyperspectral imaging. Li, Jiangbo,Chen, Liping,Huang, Wenqian,Wang, Qingyan,Zhang, Baohua,Tian, Xi,Li, Bin,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Wang, Qingyan,Tian, Xi,Fan, Shuxiang,Li, Bin,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian.

[4]Design and Test of Tomatoes Harvesting Robot. Feng, Qingchun,Wang, Xiaonan,Wang, Guohua,Li, Zhen. 2015

[5]Monitoring of Winter Wheat Aboveground Fresh Biomass Based on Multi-Information Fusion Technology. Zheng Ling,Dong Da-ming,Zhang Bao-hua,Wang Cheng,Zhao Chun-jiang,Zheng Ling,Zhu Da-zhou. 2016

[6]Developing a machine vision system for simultaneous prediction of freshness indicators based on tilapia (Oreochromis niloticus) pupil and gill color during storage at 4 degrees C. Shi, Ce,Qian, Jianping,Han, Shuai,Fan, Beilei,Yang, Xinting,Wu, Xiaoming,Shi, Ce,Qian, Jianping,Han, Shuai,Fan, Beilei,Yang, Xinting,Wu, Xiaoming,Shi, Ce,Qian, Jianping,Han, Shuai,Fan, Beilei,Yang, Xinting,Wu, Xiaoming. 2018

[7]Segmentation of Cotton Leaves Based on Improved Watershed Algorithm. Niu, Chong,Niu, Yuguang,Niu, Chong,Li, Han,Zheng, Wengang,Niu, Chong,Li, Han,Zheng, Wengang,Zhou, Zengchan,Bu, Yunlong. 2016

[8]Design and test of tray-seedling sorting transplanter. Feng Qingchun,Zhao Chunjiang,Jiang Kai,Fan Pengfei,Wang Xiu. 2015

[9]Recognition of wheat preharvest sprouting based on hyperspectral imaging. Wu, Qiong,Wang, Jihua,Wu, Qiong,Zhu, Dazhou,Wang, Cheng,Ma, Zhihong,Wang, Jihua. 2012

[10]Machine vision technology for detecting the external defects of fruits - a review. Li, J. B.,Huang, W. Q.,Zhao, C. J.. 2015

[11]Survey of Support Vector Machine in the Processing of Remote Sensing Image. Li, Su,Wang, Wenchao. 2013

[12]Quick image processing method of HJ satellites applied in agriculture monitoring. Yu Haiyang,Liu Yanmei,Yang Guijun,Yang Xiaodong,Yu Haiyang,Liu Yanmei,Yang Guijun,Yang Xiaodong. 2016

[13]Image processing methods to evaluate tomato and zucchini damage in post-harvest stages. Antonio Alvarez-Bermejo, Jose,Giagnocavo, Cynthia,Ming, Li,Yang Xinting,Castillo Morales, Encarnacion,Morales Santos, Diego P.. 2017

[14]THE INFRARED THERMAL IMAGE-BASED MONITORING PROCESS OF PEACH DECAY UNDER UNCONTROLLED TEMPERATURE CONDITIONS. Jiao, L. Z.,Wu, W. B.,Zheng, W. G.,Dong, D. M.. 2015

[15]MOBILE SMART DEVICE-BASED VEGETABLE DISEASE AND INSECT PEST RECOGNITION METHOD. Wang, Kaiyi,Zhang, Shuifa,Wang, Zhibin,Liu, Zhongqiang,Yang, Feng,Wang, Kaiyi,Zhang, Shuifa,Wang, Zhibin,Liu, Zhongqiang,Yang, Feng. 2013

[16]Detection of early bruises on peaches (Amygdalus persica L.) using hyperspectral imaging coupled with improved watershed segmentation algorithm. Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian. 2018

[17]Design and Implementation of an Automatic Grading System of Diced Potatoes Based on Machine Vision. Wang, Chaopeng,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping. 2016

[18]Fast detection and visualization of early decay in citrus using Vis-NIR hyperspectral imaging. Li, Jiangbo,Huang, Wenqian,Tian, Xi,Wang, Chaopeng,Fan, Shuxiang,Zhao, Chunjiang,Li, Jiangbo,Huang, Wenqian,Tian, Xi,Wang, Chaopeng,Fan, Shuxiang,Zhao, Chunjiang,Li, Jiangbo,Huang, Wenqian,Zhao, Chunjiang.

[19]Computer vision detection of defective apples using automatic lightness correction and weighted RVM classifier. Zhang, Baohua,Gong, Liang,Zhao, Chunjiang,Liu, Chengliang,Huang, Danfeng,Zhang, Baohua,Huang, Wenqian,Li, Jiangbo,Zhao, Chunjiang.

[20]Detection of Early Rottenness on Apples by Using Hyperspectral Imaging Combined with Spectral Analysis and Image Processing. Zhang, Baohua,Fan, Shuxiang,Li, Jiangbo,Huang, Wenqian,Zhao, Chunjiang,Qian, Man,Zheng, Ling,Zhang, Baohua,Zhao, Chunjiang.

作者其他论文 更多>>