您好,欢迎访问北京市农林科学院 机构知识库!

Geographical classification of apple based on hyperspectral imaging

文献类型: 外文期刊

作者: Guo, Zhiming 1 ; Huang, Wenqian 1 ; Chen, Liping 1 ; Zhao, Chunjiang 1 ; Peng, Yankun 1 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China

关键词: hyperspectral imaging;geographical origin;apple;feature extraction;support vector machine

期刊名称:SENSING FOR AGRICULTURE AND FOOD QUALITY AND SAFETY V

ISSN: 0277-786X

年卷期: 2013 年 8721 卷

页码:

收录情况: SCI

摘要: Attribute of apple according to geographical origin is often recognized and appreciated by the consumers. It is usually an important factor to determine the price of a commercial product. Hyperspectral imaging technology and supervised pattern recognition was attempted to discriminate apple according to geographical origins in this work. Hyperspectral images of 207 Fuji apple samples were collected by hyperspectral camera (400-1000nm). Principal component analysis (PCA) was performed on hyperspectral imaging data to determine main efficient wavelength images, and then characteristic variables were extracted by texture analysis based on gray level co-occurrence matrix (GLCM) from dominant waveband image. All characteristic variables were obtained by fusing the data of images in efficient spectra. Support vector machine (SVM) was used to construct the classification model, and showed excellent performance in classification results. The total classification rate had the high classify accuracy of 92.75% in the training set and 89.86% in the prediction sets, respectively. The overall results demonstrated that the hyperspectral imaging technique coupled with SVM classifier can be efficiently utilized to discriminate Fuji apple according to geographical origins.

  • 相关文献

[1]Vertical features of yellow rust infestation on winter wheat using hyperspectral imaging measurements. Zhao, Jinling,Zhang, Dongyan,Huang, Linsheng,Zhang, Qing,Liu, Wenjing,Yang, Hao. 2016

[2]Effectively Predicting Soluble Solids Content in Apple Based on Hyperspectral Imaging. Huang Wen-qian,Li Jiang-bo,Chen Li-ping,Guo Zhi-ming. 2013

[3]Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data. Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi.

[4]Development of a multispectral imaging system for online detection of bruises on apples. Huang, Wenqian,Li, Jiangbo,Wang, Qingyan,Chen, Liping.

[5]Design of structured-light vision system for tomato harvesting robot. Feng Qingchun,Zhou Jianjun,Wang Xiu,Cheng Wei. 2014

[6]HYPERSPECTRAL IMAGE FOR DISCRIMINATING APHID AND APHID DAMAGE REGION OF WINTER WHEAT LEAF. Luo Juhua,Huang Wenjiang,Guan Qingsong,Zhao Jinling,Zhang Jingcheng. 2013

[7]Dynamic monitoring and driving power analysis of LUCC based on remote sensing in Beijing in recent thirty years. Gu, Xiaohe,Guo, Wei,Dong, Yansheng,Wang, Yanchang. 2013

[8]Survey of Support Vector Machine in the Processing of Remote Sensing Image. Li, Su,Wang, Wenchao. 2013

[9]Comparative Study on Remote Sensing Invertion Methods for Estimating Winter Wheat Leaf Area Index. Xie Qiao-yun,Huang Wen-jiang,Peng Dai-liang,Zhang Qing,Xie Qiao-yun,Liang Dong,Huang Lin-sheng,Zhang Dong-yan,Cai Shu-hong,Yang Gui-jun. 2014

[10]A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth. Qiu, Quan,Qiao, Xiaojun,Zheng, Chenfei,Wang, Wenping,Yu, Jingquan,Shi, Kai,Bai, He. 2017

[11]Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models. Yuan, Huanhuan,Yang, Guijun,Wang, Yanjie,Liu, Jiangang,Yu, Haiyang,Feng, Haikuan,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong,Yuan, Huanhuan,Li, Changchun,Wang, Yanjie,Yuan, Huanhuan,Yang, Guijun,Liu, Jiangang,Feng, Haikuan,Yang, Xiaodong,Yang, Guijun,Yu, Haiyang,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong. 2017

[12]ESTIMATION OF MAIZE PLANTING AREA USING MIXED FIELD DECOMPOSITION OF MULTI-TEMPORAL TM IMAGES. Gu, Xiaohe,Dong, Yansheng,Ma, Li,Dong, Yingying. 2012

[13]Identification of seedling cabbages and weeds using hyperspectral imaging. Wei, Deng,Zhao Chunjiang,Xiu, Wang,Huang, Yanbo,Wei, Deng,Zhao Chunjiang,Xiu, Wang,Wei, Deng,Zhao Chunjiang,Xiu, Wang,Wei, Deng,Zhao Chunjiang,Xiu, Wang. 2015

[14]Comparative analysis of models for robust and accurate evaluation of soluble solids content in 'Pinggu' peaches by hyperspectral imaging. Chen, Liping. 2017

[15]Detection of Wheat Powdery Mildew by Differentiating Background Factors using Hyperspectral Imaging. Zhang, Dongyan,Zhang, Lifu,Zhang, Dongyan,Wang, Xiu,Zhang, Dongyan,Wang, Xiu,Lin, Fenfang,Huang, Yanbo. 2016

[16]Rapid determination of biogenic amines in cooked beef using hyperspectral imaging with sparse representation algorithm. Yang, Dong,Lu, Anxiang,Wang, Jihua,Yang, Dong,Wang, Jihua,Lu, Anxiang,Ren, Dong,Wang, Jihua,Lu, Anxiang,Wang, Jihua. 2017

[17]Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Zhang, Baohua,Huang, Wenqian,Li, Jiangbo,Zhao, Chunjiang,Fan, Shuxiang,Wu, Jitao,Zhang, Baohua,Zhao, Chunjiang,Liu, Chengliang. 2014

[18]Measuring the Moisture Content in Maize Kernel Based on Hyperspctral Image of Embryo Region. Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua,Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua,Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua,Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua. 2016

[19]Principles and Applications of Hyperspectral Imaging Technique in Quality and Safety Inspection of Fruits and Vegetables. Zhang Bao-hua,Zhang Bao-hua,Li Jiang-bo,Fan Shu-xiang,Huang Wen-qian,Zhang Chi,Wang Qing-yan,Xiao Guang-dong. 2014

[20]Identification of Wheat Cultivars Based on the Hyperspectral Image of Single Seed. Zhu, Dazhou,Wang, Cheng,Wu, Qiong,Zhao, Chunjiang,Pang, Binshuang,Shan, Fuhua. 2012

作者其他论文 更多>>