您好,欢迎访问浙江省农业科学院 机构知识库!

Nitrogen management to reduce yield-scaled global warming potential in rice

文献类型: 外文期刊

作者: Liang, X. Q. 1 ; Li, H. 2 ; Wang, S. X. 3 ; Ye, Y. S. 1 ; Ji, Y. J. 1 ; Tian, G. M. 1 ; van Kessel, C. 4 ; Linquist, B. A 1 ;

作者机构: 1.Zhejiang Univ, Coll Environm & Resource Sci, Inst Environm Sci & Technol, Hangzhou 310058, Zhejiang, Peoples R China

2.Zhejiang Acad Agr Sci, Inst Environm Resource Soil & Fertilizer, Hangzhou 310021, Zhejiang, Peoples R China

3.Jiangxi Acad Agr Sci, Nanchang 330200, Peoples R China

4.Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA

关键词: CH4 and N2O;Global warming potential;Manure;Rice;Urea;Yield-scaled emissions

期刊名称:FIELD CROPS RESEARCH ( 影响因子:5.224; 五年影响因子:6.19 )

ISSN: 0378-4290

年卷期: 2013 年 146 卷

页码:

收录情况: SCI

摘要: Fertilizer N is usually required to achieve optimal yields but when applied in excess there is increased risk of pollution, including higher greenhouse gas (GHG) emissions. Thus, optimal N management must consider both yields and environmental effects. Yield-scaled GWP (Global Warming Potential), which is the GWP (in CO2 equivalents) per Mg of grain yield, is a useful metric for evaluating management options where the goal is to achieve both high yields with minimal environmental burden. A 6-year field study was conducted to test the hypothesis that the lowest yield-scaled GHG emissions for rice occur when N is applied at optimal N rates for maximum yields, independent of the source of N applied. We tested this hypothesis for organic (manure) and inorganic (urea) N sources. The N rates and sources in each growing season were: 0, 90, 180 and 270 kg N ha(-1) applied as either urea alone or pig manure combined with urea (where N was added as manure and supplied 60% of the total N rate). The N rates to achieve maximum yields (90 to 180 kg N ha(-1) depending on year) were similar for both N sources. Seasonal CH4 and N2O emissions varied significantly between years but the magnitude of emissions was determined largely by N source. Across N rates, application of manure increased GWP by almost 60% relative to the urea treatments due to higher CH4 and N2O emissions. When urea was used as the sole N source, yield-scaled GWP (87 kg CO2 (eq). Mg-1 grain) was lowest at optimal N rates for maximum yields. In contrast, when manure was used, yield-scaled GWP was higher than for urea and increased with increasing manure-N rates (from 104 to 171 kg CO2 (eq). Mg-1 grain). The lowest yield-scaled GWP for manure was when no manure was applied - despite the low yields. Thus, when manure is used as an N source in flooded rice systems, over application should be avoided. (C) 2013 Elsevier B.V. All rights reserved.

  • 相关文献

[1]Influence of the DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen transformation and leaching in multi-layer soil columns. Yu, Qiao-Gang,Chen, Ying-Xu,Ye, Xue-Zhu,Tian, Guang-Ming,Zhang, Zhi-Jian. 2007

[2]Long-Term Fertilizer Experiment Network in China: Crop Yields and Soil Nutrient Trends. Poulton, Paul,Powlson, David,Todd, Alan,Payne, Roger,Zhao, Bing-qiang,Li, Xiu-ying,Li, Xiao-ping,Shi, Xiao-jun,Huang, Shao-min,Wang, Bo-ren,Zhu, Ping,Yang, Xue-yun,Liu, Hua,Chen, Yi.

[3]Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy-upland rotation system. Lin, Hui,Sun, Wanchun,Fu, Jianrong,Ma, Junwei,Zhang, Zulin,Chapman, Stephen J.,Freitag, Thomas E.,Zhang, Xin.

[4]Simultaneous determination of sulfonamides and metabolites in manure samples by one-step ultrasound/microwave-assisted solid-liquid-solid dispersive extraction and liquid chromatography-mass spectrometry. Wu, Hui-zhen,Li, Zu-guang,Wu, Hui-zhen,Qian, Ming-rong,Wang, Jian-mei,Zhang, Hu,Ma, Jun-wei,Lee, Maw-rong.

[5]Modeling and Analyzing the Influence of Blade Shape on Rice Canopy Structure. Liyong Cao,Dong Li,Junmin Wang,Zhigang Zhan. 2012

[6]Modeling and analyzing the influence of blade shape on rice canopy structure. Li, Dong,Wang, Junmin,Zhan, Zhigang,Cao, Liyong. 2012

[7]Mapping of leaf and neck blast resistance genes with RFLP, RAPD and resistance gene analogs in rice. K.-L. ZHENG,R.-Y. CHAI,M.-Z. JIN,J.-L. WU,Y.-Y. FAN,H. LEUNG,J.-Y. ZHUANG. 2000

[8]Monitoring Leaf Chlorophyll Fluorescence with Spectral Reflectance in Rice (Oryza sativa L.). Hao Zhang,Lian-feng Zhu,Hao Hu,Ke-feng Zheng,Qian-yu Jin. 2011

[9]DEVELOPMENT AND APPLICATION OF THE CONSULTING SYSTEM OF PRECISION FERTILIZATION IN RICE. Xiaonan Lii,Wanzhu Ma,Zhouqiao Ren,Xiaojia Chen. 2005

[10]Effects of Nitrogenous Fertilization in Rice Fields on the Predatory Function ofCyrtorhinus Lividipennis to Nilaparvata lugens Stal. LU Zhongxian,YU Xiaoping,HEONG Kongluen,HU Cui. 2008

[11]Resistance Performances of Transgenic Bt Rice Lines T-2A-1 and T1c-19 Against Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Zheng, Xusong,Yang, Yajun,Xu, Hongxing,Wang, Baoju,Lu, Zhongxian,Zheng, Xusong,Yang, Yajun,Xu, Hongxing,Wang, Baoju,Lu, Zhongxian,Chen, Hao,Lin, Yongjun,Chen, Hao,Lin, Yongjun. 2011

[12]Differentiation of a Miniature Inverted Transposable Element (MITE) system in Asian rice cultivars and its inference for a diphyletic origin of two subspecies of Asian cultivated rice. Hu, H,Mu, J,Zhang, HJ,Tao, YZ,Han, B. 2006

[13]Phosphorus Adsorption and Bioavailability in a Paddy Soil Amended with Pig Manure Compost and Decaying Rice Straw. Liang, Yongchao,Guo, Bin,Liang, Yongchao,Li, Zhaojun,Han, Fengxiang. 2009

[14]Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Zhang, Hua,Xu, Heng,Feng, Mengjie,Zhu, Ying. 2018

[15]Agrobacterium-mediated transformation efficiency is altered in a novel rice bacterial blight resistance cultivar and is influenced by environmental temperature. Dong, Rui-xian,Chen, Juan,Wang, Xu-ming,Li, Jin-shan,Zhou, Jie,Yang, Yong,Yu, Chu-lang,Cheng, Ye,Yan, Cheng-qi,Chen, Jian-ping,Dong, Rui-xian,Chen, Juan,Li, Jin-shan. 2012

[16]Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice. Yan, Wenyi,Zeng, Longjun,Peng, Yu,Yan, Dawei,Yang, Weibing,Yang, Donglei,He, Zuhua,Yan, Wenyi,Dong, Yanjun,Yan, Wenyi,Ye, Shenghai,Jin, Qingsheng,Zhang, Xiaoming. 2010

[17]Identification and Classification of Rice Leaf Blast Based on Multi-Spectral Imaging Sensor. Lou Bing-gar,Feng Lei,Sun Guang-ming,Wu Di,He Yong,Chai Rong-yao. 2009

[18]Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice. Zhang, Yingying,Zhu, Yongyou,Peng, Yu,Yan, Dawei,Li, Qun,He, Zuhua,Wang, Jianjun,Wang, Linyou. 2008

[19]Sustainable Management of Rice Insect Pests by Non-Chemical-Insecticide Technologies in China. Xu Hong-xing,Yang Ya-jun,Lu Yan-hui,Zheng Xu-song,Tian Jun-ce,Lu Zhong-xian,Lai Feng-xiang,Fu Qiang. 2017

[20]Bacterial brown stripe of rice in soil-less culture system caused by Acidovorax avenae subsp avenae in China. Li, Bin,Liu, Baoping,Tao, Zhongyun,Xie, Guanlin,Li, Hongye,Yu, Rongrong,Wang, Yanli,Sun, Guochang. 2011

作者其他论文 更多>>