您好,欢迎访问河北省农林科学院 机构知识库!

Diversity of rhizosphere bacteria associated with different soybean cultivars in two soil conditions

文献类型: 外文期刊

作者: Wang, Hao 1 ; Wang, Shao Dong 1 ; Jiang, Yan 2 ; Zhao, Shuang Jin 4 ; Chen, Wen Xin 3 ;

作者机构: 1.Northeast Agr Univ, Key Lab Soybean Biol, Chinese Minist Educ, Harbin 150028, Peoples R China

2.Northeast Agr Univ, Natl Res Ctr Soybean Engn & Technol, Harbin 150028, Peoples R China

3.China Agr Univ, Coll Biol Sci, Univ State Key Lab Agrobiotechnol, Beijing 100094, Peoples R China

4.Hebei Acad Agr & Forestry Sci, Inst Food & Oil Crops, Shijiazhuang 050031, Peoples R China

关键词: soybean;bacteria;diversity;rhizosphere;cultivar

期刊名称:SOIL SCIENCE AND PLANT NUTRITION ( 影响因子:2.389; 五年影响因子:2.525 )

ISSN: 0038-0768

年卷期: 2014 年 60 卷 5 期

页码:

收录情况: SCI

摘要: Aiming at learning the effects of soil conditions and cultivar on the bacterial diversity in the rhizosphere of soybean (Glycine max(L.) Merr.), bacterial communities associated with four soybean cultivars grown in two soils were revealed by terminal-restriction fragment length polymorphism (T-RFLP) combined with sequencing analysis of a 16S rDNA clone library. Lower bacteria diversity was found in soil A which has higher salinity and nutrient contents, while the highest bacterial diversity was found in the rhizosphere of cv. Jidou 12 in both soils. These results revealed that both the soil conditions and soybean cultivar affected the community composition of rhizosphere bacteria, but the effect of soil conditions was greater than that of soybean cultivar as demonstrated by the principal component analysis. It also revealed that the abundant rhizosphere bacteria may also the main symbiotic or non-symbiotic nodule endophytes.

  • 相关文献

[1]Selective Breeding Research of New Strawberry Cultivars 'Shimei 5'. Yang, Li,Li, Li,Yang, Lei,Hao, Baochun,Chu, Fengjie. 2009

[2]Extending growing period is limited to offsetting negative effects of climate changes on maize yield in the North China Plain. Huang, Shoubing,Li, Yebei,Tao, Hongbin,Wang, Pu,Lv, Lihua,Zhu, Jincheng. 2018

[3]Rhizosphere cadmium speciation and mechanisms of cadmium tolerance in different oilseed rape species. Ru, SH,Xing, JP,Su, DC. 2006

[4]Diversity of Growth Habits and Their Association with VRN Allele of 81 American Wheat Lines. Ji Gui-su,Zhang Qing-jiang,Bai Gui-hua. 2010

[5]Stability of growth periods traits for soybean cultivars across multiple locations. Liu Zhang-xiong,Chang Ru-zhen,Qiu Li-juan,Wang Xiao-bo,Yang Chun-yan,Xu Ran,Zhang Li-feng,Lu Wei-guo,Wang Qian,Wei Su-hong,Yang Chun-ming,Wang Hui-cai,Wang Rui-zhen,Zhou Rong,Chen Huai-zhu. 2016

[6]QTL Mapping of Isoflavone, Oil and Protein Contents in Soybean (Glycine max L. Merr.). Liang Hui-zhen,Yu Yong-liang,Wang Shu-feng,Lian Yun,Wang Ting-feng,Wei Yan-li,Gong Peng-tao,Fang Xuan-jun,Liu Xue-yi,Zhang Meng-chen. 2010

[7]Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. Li, Ying-hui,Yan, Long,Qi, Xiao-tian,Zhang, Le,Chang, Ru-zhen,Guo, Yong,Wang, Xiao-bo,Guan, Rong-xia,Liu, Yu-lin,Jin, Long-guo,Liu, Zhang-xiong,Zhang, Li-juan,Wang, Ke-jing,Qiu, Li-juan,Zhao, Shan-cen,Li, Dong,Li, Jun,Guo, Xiao-sen,He, Wei-ming,Liang, Qin-si,Ye, Chen,Tao, Yong,Wang, Jun-yi,Zhang, Xiu-qing,Chen, Jie,Nielsen, Rasmus,Li, Rui-qiang,Wang, Jian,Wang, Jun,Ma, Jian-xin,Yan, Long,Zhang, Meng-chen,Tao, Yong,Nielsen, Rasmus,Wang, Jun,Wang, Jun-yi,Nielsen, Rasmus,Nielsen, Rasmus,Chen, Peng-yin,Li, Wen-bin,Reif, Jochen C.,Purugganan, Michael,Purugganan, Michael. 2013

[8]Characterization of Genetic Basis on Synergistic Interactions between Root Architecture and Biological Nitrogen Fixation in Soybean. Yang, Yongqing,Yang, Yongqing,Li, Xinxin,Ai, Wenqin,Liu, Dong,Qi, Wandong,Liao, Hong,Zhao, Qingsong,Zhang, Mengchen,Yang, Chunyan,Ai, Wenqin,Liu, Dong,Qi, Wandong. 2017

[9]Identification of QTL with large effect on seed weight in a selective population of soybean with genome-wide association and fixation index analyses. Yan, Long,Hofmann, Nicolle,Quigley, Charles,Fickus, Edward,Cregan, Perry,Song, Qijian,Li, Shuxian,Ferreira, Marcio Elias,Song, Baohua,Jiang, Guoliang,Ren, Shuxin,Hofmann, Nicolle. 2017

[10]Proteomic analysis of elite soybean Jidou17 and its parents using iTRAQ-based quantitative approaches. Qin, Jun,Gu, Feng,Zhao, Shuangjin,Yang, Chunyan,Zhang, Mengchen,Liu, Duan,Chen, Hao,Zhan, Xu,Yin, Changcheng,Zhang, Jianan. 2013

[11]An effective field screening method for flood tolerance in soybean. Wu, Chengjun,Zeng, Ailan,Chen, Pengyin,Florez-Palacios, Liliana,Hummer, Wade,Mokua, Jane,Klepadlo, Mariola,Yan, Long,Ma, Qibin,Cheng, Yanbo,Chen, Pengyin.

[12]Genetic contribution of foreign germplasm to elite Chinese soybean (Glycine max) cultivars revealed by SSR markers. Qin Jun,Chen Weiyuan,Guan Rongxia,Jiang Chengxi,Li Yinghui,Fu Yashu,Liu Zhangxiong,Zhang Mengchen,Chang Ruzhen,Qiu Lijuan. 2006

[13]Inhibition of isoflavone biosynthesis enhanced T-DNA delivery in soybean by improving plant-Agrobacterium tumefaciens interaction. Zhang, Yan-Min,Zhang, Hong-Mei,Liu, Zi-Hui,Guo, Xiu-Lin,Li, Hui-Cong,Li, Guo-Liang,Jiang, Chun-Zhi,Zhang, Meng-Chen.

[14]Improvement of soybean transformation via Agrobacterium tumefaciens methods involving alpha-aminooxyacetic acid and sonication treatments enlightened by gene expression profile analysis. Zhang, Yan-Min,Liu, Zi-Hui,Yang, Rui-Juan,Li, Guo-Liang,Guo, Xiu-Lin,Zhang, Hua-Ning,Zhang, Hong-Mei,Di, Rui,Zhao, Qing-Song,Zhang, Meng-Chen.

[15]Validation of the quantitative trait locus underlying soybean plant height using residual heterozygous lines and near-isogenic lines across multi-environments. Yan, Long,Zhang, Yuanyuan,Yang, Chunyan,Chen, Qiang,Liu, Bingqiang,Di, Rui,Zhang, Mengchen,Yan, Long,Song, Qijian,Cregan, Perry B.,An, Yongqiang Charles,Wu, Chengjun.

[16]iTRAQ-based analysis of developmental dynamics in the soybean leaf proteome reveals pathways associated with leaf photosynthetic rate. Qin, Jun,Wang, Fengmin,Zhang, Mengchen,Xu, Jin,Zhang, Jianan,Liu, Duan,Yin, Changcheng,Chen, Hao,Chen, Pengyin,Qin, Jun,Ma, Jinbing,Zhang, Bo.

作者其他论文 更多>>