您好,欢迎访问浙江省农业科学院 机构知识库!

Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean

文献类型: 外文期刊

作者: Mak, Michelle 1 ; Babla, Mohammad 1 ; Xu, Sheng-Chun 2 ; O'Carrigan, Andrew 1 ; Liu, Xiao-Hui 1 ; Gong, Ya-Ming 2 ; Ho 1 ;

作者机构: 1.Univ Western Sydney, Sch Sci & Hlth, Penrith, NSW 2751, Australia

2.Zhejiang Acad Agr Sci, Inst Vegetables, Hangzhou 310021, Zhejiang, Peoples R China

3.Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China

关键词: Drought stress;Glycine max L.;Leaf mesophyll ion fluxes;Microelectrode ion flux measurement;Photosynthesis;Stomatal closure

期刊名称:ENVIRONMENTAL AND EXPERIMENTAL BOTANY ( 影响因子:5.545; 五年影响因子:5.99 )

ISSN: 0098-8472

年卷期: 2014 年 98 卷

页码:

收录情况: SCI

摘要: Understanding the roles of chemical signals for drought tolerance is important for improving plant water use efficiency. Microelectrode ion flux measurement (MIFE), leaf gas exchange, and stomatal imaging were employed to assess the impact of short-term, PEG-induced and prolonged drought stress on soybean plants. We developed a new method to record steady-state K+, H+ and Ca2+ fluxes from leaf mesophyll of soybean plants grown in a glasshouse over a long time period. Long-term K+, H+ and Ca2+ fluxes under drought condition differed significantly from short-term PEG-induced drought stress. Moreover, the magnitude of changes differed between the ion fluxes and the physiological and growth traits. For instance, in the severe drought treatment, differences in the magnitude of Ca2+ efflux between the drought-stressed plants and the control were greater than the changes in aperture width, guard cell width and leaf temperature. In addition, FP influx and K+ and Ca2+ efflux of leaf mesophyll were highly significantly (P<0.01) correlated with many physiological traits. In summary, our results suggest that a large K. efflux, alkalisation of apoplastic pH (FP influx), and an early response of Ca2+ efflux from leaf mesophyll are likely to serve as chemical signals and significant indicators for levels of drought stress in soybean. (C) 2013 Elsevier B.V. All rights reserved.

  • 相关文献

[1]A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2. Qiao, Bei,Zhang, Qian,Liu, Dongliang,Wang, Haiqi,Yin, Jingya,Wang, Rui,He, Mengli,Cui, Meng,Shang, Zhonglin,Zhu, Zhengge,Wang, Dekai.

[2]Overexpression of the Rice SUMO E3 Ligase Gene OsSIZ1 in Cotton Enhances Drought and Heat Tolerance, and Substantially Improves Fiber Yields in the Field under Reduced Irrigation and Rainfed Conditions. Mishra, Neelam,Sun, Li,Zhu, Xunlu,Smith, Jennifer,Esmaeili, Nardana,Zhang, Hong,Srivastava, Anurag Prakash,Yang, Xiaojie,Pehlivan, Necla,Luo, Hong,Shen, Guoxin,Jones, Don,Auld, Dick,Burke, John,Payton, Paxton.

[3]RdreB1BI enhances drought tolerance by activating AQP-related genes in transgenic strawberry. Gu, Xianbin,Gao, Zhihong,Yan, Yichao,Qiao, Yushan,Gu, Xianbin,Chen, Yahua,Wang, Xiuyun,Gu, Xianbin. 2017

[4]Isobaric Tags for Relative and Absolute Quantitation (iTRAQ)-Based Comparative Proteome Analysis of the Response of Ramie under Drought Stress. An, Xia,Zhang, Jingyu,Dai, Lunjin,Liao, Yiwen,Liu, Lijun,Wang, Bo,Peng, Dingxiang,An, Xia,Deng, Gang. 2016

[5]An expressed sequence tags analysis for leaves of Chinese milk vetch (Astragalus sinicus). Zhang, X.,Wang, J.,Cao, K.,Xu, C.,Cao, W..

[6]Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Banjara, Manoj,Zhang, Hong,Zhu, Longfu,Shen, Guoxin,Payton, Paxton.

[7]Characterization of transgenic cotton (Gossypium hirsutum L.) over-expressing Arabidopsis thaliana Related to ABA-insensitive3(ABI3)/Vivparous1 (AtRAV1) and AtABI5 transcription factors: improved water use efficiency through altered guard cell physiology. Fiene, Justin G.,Kalns, Lauren,Sword, Gregory A.,Mallick, Sayani,Mittal, Amandeep,Rock, Christopher D.,Nansen, Christian,Nansen, Christian,Dever, Jane.

[8]Decreased energy synthesis is partially compensated by a switch to sucrose synthase pathway of sucrose degradation in restricted root of tomato plants. Shi, Kai,Fu, Li-Jun,Zhou, Yan-Hong,Yu, Jing-Quan,Yu, Jing-Quan,Dong, De-Kun.

[9]Mass-density relationship changes along salinity gradient in Suaeda salsa L.. Zhang, Hao,Zheng, Kefeng,Wang, Genxuan,Zhang, Weiping.

[10]Global analysis of lysine acetylation in strawberry leaves. Fang, Xianping,Chen, Wenyue,Ruan, Songlin,Ma, Huasheng,Zhao, Yun,Zhang, Hengmu,Yan, Chengqi,Jin, Liang,Cao, Lingling,Zhu, Jun,Cheng, Zhongyi. 2015

[11]BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. Wu, Xue-Long,Liu, Zhi-Hong,Hu, Zhang-Hua,Huang, Rui-Zhi. 2014

[12]Detecting Suaeda salsa L. chlorophyll fluorescence response to salinity stress by using hyperspectral reflectance. Zhang, Hao,Wang, Kelin,Song, Tongqing,Zhang, Hao,Wang, Kelin,Zeng, Fuping,Hu, Hao,Zhang, Xiaobin. 2012

[13]Monitoring Leaf Chlorophyll Fluorescence with Spectral Reflectance in Rice (Oryza sativa L.). Zhang, Hao,Zhu, Lian-feng,Jin, Qian-yu,Zhang, Hao,Hu, Hao,Zheng, Ke-feng. 2011

[14]Modulation of Exogenous Glutathione in Ultrastructure and Photosynthetic Performance Against Cd Stress in the Two Barley Genotypes Differing in Cd Tolerance. Wang, Fang,Chen, Fei,Cai, Yue,Zhang, Guoping,Wu, Feibo,Chen, Fei. 2011

[15]Root restriction-induced limitation to photosynthesis in tomato (Lycopersicon esculentum Mill.) leaves. Shi, Kai,Ding, Xiao-Tao,Zhou, Yan-Hong,Yu, Jing-Quan,Yu, Jing-Quan,Dong, De-Kun. 2008

[16]Morphological, anatomical, and physiological characteristics involved in development of the large culm trait in rice. Wu, Li-Li,Chen, Kun-Ming,Liu, Zhong-Li,Zhou, Cong-Yi,Wang, Jun-Min. 2011

[17]Morphological, Physiological and Proteomic Analyses Provide Insights into the Improvement of Castor Bean Productivity of a Dwarf Variety in Comparing with a High-Stalk Variety. Hu, Wenjun,Chen, Lin,Qiu, Xiaoyun,Lu, Hongling,Wei, Jia,Bai, Yueding,Shen, Guoxin,He, Ningjia,Hu, Rongbin,Sun, Li,Zhang, Hong. 2016

作者其他论文 更多>>