您好,欢迎访问浙江省农业科学院 机构知识库!

De novo characterization of the Anthurium transcriptome and analysis of its digital gene expression under cold stress

文献类型: 外文期刊

作者: Tian, Dan-Qing 1 ; Pan, Xiao-Yun 1 ; Yu, Yong-Ming 1 ; Wang, Wei-Yong 1 ; Zhang, Fei 2 ; Ge, Ya-Ying 1 ; Shen, Xiao-La 1 ;

作者机构: 1.Zhejiang Acad Agr Sci, Flower Res & Dev Ctr, Hangzhou 311202, Zhejiang, Peoples R China

2.Nanjing Agr Univ, Coll Hort, Nanjing 210095, Jiangsu, Peoples R China

3.Jiangsu Prov & Chinese Acad Sci, Inst Bot, Nanjing 210014, Jiangsu, Peoples R China

关键词: Anthurium;Cold;Transcriptome;Digital gene expression

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2013 年 14 卷

页码:

收录情况: SCI

摘要: Background: Anthurium andraeanum is one of the most popular tropical flowers. In temperate and cold zones, a much greater risk of cold stress occurs in the supply of Anthurium plants. Unlike the freeze-tolerant model plants, Anthurium plants are particularly sensitive to low temperatures. Improvement of chilling tolerance in Anthurium may significantly increase its production and extend its shelf-life. To date, no previous genomic information has been reported in Anthurium plants. Results: Using Illumina sequencing technology, we generated over two billion base of high-quality sequence in Anthurium, and demonstrated de novo assembly and annotation of genes without prior genome information. These reads were assembled into 44,382 unigenes (mean length=560 bp). Based on similarity search with known protein in the non-redundant (nr) protein database, 27396 unigenes (62%) were functionally annotated with a cut-off E-value of 10(-5). Further, DGE tags were mapped to the assembled transcriptome for gene expression analysis under cold stress. In total, 4363 differentially expressed genes were identified. Among these genes, 292, 805 and 708 genes were up-regulated after 1-h, 5-h and 24-h cold treatment, respectively. Then we mapped these cold-induced genes to the KEGG database. Specific enrichment was observed in photosynthesis pathway, metabolic pathways and oxidative phosphorylation pathway in 1-h cold-treated plants. After a 5-h cold treatment, the metabolic pathways and oxidative phosphorylation pathway were significantly identified as the top two pathways. After 24-h cold treatment, mRNA surveillance pathway, RNA transport pathway and plant-pathogen interaction pathway were significantly enriched. Together, a total of 39 cold-inducible transcription factors were identified, including subsets of AP2/ERF, Zinc figure, NAC, MYB and bZIP family members. Conclusion: Our study is the first to provide the transcriptome sequence resource for Anthurium plants, and demonstrate its digital gene expression profiling under cold conditions using the assembled transcriptome data for reference. These data provides a valuable resource for genetic and genomic studies under abiotic conditions for Anthurium plants.

  • 相关文献

[1]Genetic variations within a collection of anthuriums unraveled by morphological traits and AFLP markers. Ge, Yaying,Zhang, Fei,Shen, Xiaolan,Yu, Yongming,Pan, Xiaoyun,Liu, Xiaojing,Liu, Jianxin,Pan, Gangmin,Tian, Danqing.

[2]Identification of volatile and softening-related genes using digital gene expression profiles in melting peach. Li, Xiong-wei,Jiang, Jun,Zhang, Li-ping,Yu, Yi,Chai, Ming-liang,Jia, Hui-juan,Gao, Zhong-shan,Li, Xiong-wei,Ye, Zheng-wen,Wang, Xiu-min,Zhou, Jing-yi,Zhang, Hui-qin,Arus, Pere. 2015

[3]Transcriptome analysis of the livers of ducklings hatched normally and with assistance. Liu, Yali,Zeng, Tao,Du, Xue,Shen, Junda,Lu, Lizhi,Liu, Yali,He, Shishan,Zhao, Ayong.

[4]De novo assembly and characterization of Muscovy duck liver transcriptome and analysis of differentially regulated genes in response to heat stress. Zeng, Tao,Zhang, Liping,Li, Jinjun,Wang, Deqian,Tian, Yong,Lu, Lizhi,Zhang, Liping.

[5]Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Wei, Wei,Li, Qing-Tian,Zhang, Wan-Ke,Ma, Biao,Lin, Qing,Zhang, Jin-Song,Chen, Shou-Yi,Chu, Ya-Nan,Reiter, Russel J.,Yu, Xiao-Min,Zhu, Dan-Hua.

[6]Analysis of transcriptional and epigenetic changes in hybrid vigor of allopolyploid Brassica napus uncovers key roles for small RNAs. Shen, Yifei,Sun, Shuo,Shen, Enhui,Ye, Chu-Yu,Fan, Longjiang,Shen, Yifei,Sun, Shuo,Shen, Enhui,Ye, Chu-Yu,Fan, Longjiang,Hua, Shuijin,Cai, Daguang,Timko, Michael P.,Zhu, Qian-Hao.

[7]Comparative transcriptome profiling of freezing stress responses in loquat (Eriobotrya japonica) fruitlets. Xu, Hong-xia,Li, Xiao-ying,Chen, Jun-wei.

[8]De novo transcriptome sequencing in Frankliniella occidentalis to identify genes involved in plant virus transmission and insecticide resistance. Lu, Yaobin.

[9]Whole blood transcriptome comparison of pigs with extreme production of in vivo dsRNA-induced serum IFN-a. Liu, Xiangdong,Huang, Jing,Yang, Songbai,Zhao, Yunxia,Xiang, Anjing,Cao, Jianhua,Fan, Bin,Zhao, Shuhong,Zhu, Mengjin,Liu, Xiangdong,Huang, Jing,Yang, Songbai,Zhao, Yunxia,Xiang, Anjing,Cao, Jianhua,Fan, Bin,Zhao, Shuhong,Zhu, Mengjin,Liu, Xiangdong,Zhao, Junlong,Wu, Zhenfang,Huang, Jing.

[10]Characterization and Comparative Expression Profiling of Browning Response in Medinilla formosana after Cutting. Wang, Yan,Wang, Yiting,Song, Xijiao,Chen, Jianping,Liz, Kunfeng. 2016

[11]Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum). Zhu, Haifeng,Zhu, Yifang,Zou, Jianwen,Zhao, Fang-Jie,Huang, Chao-Feng,Wang, Hua. 2015

[12]De novo transcriptome analysis in Dendrobium and identification of critical genes associated with flowering. Chen, Yue,Sun, Chongbo,Lin, Renan,Zhao, Zhuangliu,Shen, Qi,Shen, Chenjia. 2017

[13]Comparative Transcriptomic Analyses of Vegetable and Grain Pea (Pisum sativum L.) Seed Development. Liu, Na,Zhang, Guwen,Xu, Shengchun,Hu, Qizan,Gong, Yaming,Mao, Weihua. 2015

[14]Identification of potential genes that contributed to the variation in the taxoid contents between two Taxus species (Taxus media and Taxus mairei). Yu, Chunna,Guo, Hong,Zhang, Yangyang,Song, Yaobin,Pi, Erxu,Dong, Ming,Wang, Huizhong,Shen, Chenjia,Yu, Chunna,Guo, Hong,Wang, Huizhong,Shen, Chenjia,Song, Yaobin,Dong, Ming,Yu, Chenliang,Zhang, Lei,Zheng, Bingsong. 2017

[15]Transciptome analysis reveals flavonoid biosynthesis regulation and simple sequence repeats in yam (Dioscorea alata L.) tubers. Wu, Zhi-Gang,Jiang, Wu,Bao, Xiao-Qing,Chen, Song-Lin,Tao, Zheng-Ming,Bao, Xiao-Qing,Chen, Song-Lin,Mantri, Nitin. 2015

[16]Insights from the Cold Transcriptome and Metabolome of Dendrobium officinale: Global Reprogramming of Metabolic and Gene Regulation Networks during Cold Acclimation. Wu, Zhi-Gang,Jiang, Wu,Chen, Song-Lin,Tao, Zheng-Ming,Jiang, Cheng-Xi,Chen, Song-Lin,Mantri, Nitin. 2016

[17]Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes. Xu, Hai-Ming,Kong, Xiang-Dong,Chen, Fei,Huang, Ji-Xiang,Zhao, Jian-Yi,Lou, Xiang-Yang. 2015

[18]Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (V. unguiculata L. Walp). Xu, Pei,Wu, Xinyi,Wang, Baogen,Wu, Xiaohua,Hu, Yaowen,Zhou, Wen,Lu, Zhongfu,Li, Guojing,Xu, Pei,Li, Guojing,Munoz-Amatriain, Maria,Close, Timothy J.,Bao-Lam Huynh,Roberts, Philip A.. 2017

作者其他论文 更多>>