您好,欢迎访问浙江省农业科学院 机构知识库!

Development and primary genetic analysis of a fertility temperature-sensitive polima cytoplasmic male sterility restorer in Brassica napus

文献类型: 外文期刊

作者: Fan, Z. X. 1 ; Lei, W. X. 2 ; Hong, D. F. 2 ; He, J. P. 2 ; Wan, L. L. 2 ; Xu, Z. H. 2 ; Liu, P. W. 3 ; Yang, G. S.;

作者机构: 1.Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China

2.Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China; Zhejiang Acad Agr Sci, Crop Res Inst, Hangzhou 310021, Peoples R China

3.Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China; Zhejiang Acad Agr Sci, Crop Res Inst, Hangzhou 310021,

关键词: Brassica napus;polima cytoplasmic male sterility;restorer;temperature-sensitive gene;fertility

期刊名称:PLANT BREEDING ( 影响因子:1.832; 五年影响因子:1.956 )

ISSN: 0179-9541

年卷期: 2007 年 126 卷 3 期

页码:

收录情况: SCI

摘要: Over the past decade, the polima cytoplasmic male sterility (pol CMS) three-line and two-line systems have been developed for the production of hybrid seed in Brassica napus oilseed rape in China. The discovery of the novel pol CMS restorer line FL-204 is described here. It restores male fertility of hybrid plants in the pol CMS system, but hybrid seed production can only be carried out under autumn sowing in Wuhan in south China under moderate temperatures at flowering. The restorer cannot be used as a male for hybrid seed production in northwestern China (Gansu) under spring sowing conditions, because there it is more or less male sterile due to high temperatures at flowering. Because of this behaviour, it is referred to as a fertility temperature-sensitive restorer (FTSR) in this paper. F-2, BC1 as well as double haploid populations were constructed to determine the inheritance of fertility restoration of FL-204 in the autumn at Wuhan and under spring sowing conditions at Gansu, respectively. Deviations from Mendelian genetics were observed. It was hypothesized that the change of fertility was the result of the interaction between nuclear genes [restoring gene (Rf) and temperature-sensitive genes (ts)] and the cytoplasm. The Rf gene in FL-204 was incapable of restoring male fertility of pol CMS lines under spring sowing conditions at Gansu where it is inactivated by the recessive ts gene present in FL-204. However, the ts gene(s) could be non-functional under moderate temperature conditions at flowering at Wuhan which allows full expression of male fertility in FL-204. The recessive ts gene(s) can only be expressed in plants containing the pol sterile cytoplasm. A method for the utilization of the FTSR pol CMS restorer FL-204 for the production of hybrid seed in B. napus oilseed rape is proposed.

  • 相关文献

[1]Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus. Wang, Fulin,Shi, Jianghua,Zheng, Tao,Wu, Guanting,Liu, Renhu,He, Jiewang,Xu, Fei,Liu, Renhu,Liu, Shengyi. 2016

[2]BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. Wu, Xue-Long,Liu, Zhi-Hong,Hu, Zhang-Hua,Huang, Rui-Zhi. 2014

[3]Genome-Wide Association Study Reveals Candidate Genes for Control of Plant Height, Branch Initiation Height and Branch Number in Rapeseed (Brassica napus L.). Zheng, Ming,Liu, Hongfang,Tang, Min,Yang, Hongli,Li, Xiaokang,Liu, Jinglin,Sun, Xingchao,Wang, Xinfa,Hua, Wei,Wang, Hanzhong,Peng, Cheng,Xu, Junfeng. 2017

[4]Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes. Xu, Hai-Ming,Kong, Xiang-Dong,Chen, Fei,Huang, Ji-Xiang,Zhao, Jian-Yi,Lou, Xiang-Yang. 2015

[5]Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Becker, Heiko C.,Ecke, Wolfgang,Moellers, Christian,Zhao, Jianyi,Dimov, Zoran.

[6]LMI1-like genes involved in leaf margin development of Brassica napus. Ni, Xiyuan,Liu, Han,Huang, Jixiang,Zhao, Jianyi.

[7]Analysis of transcriptional and epigenetic changes in hybrid vigor of allopolyploid Brassica napus uncovers key roles for small RNAs. Shen, Yifei,Sun, Shuo,Shen, Enhui,Ye, Chu-Yu,Fan, Longjiang,Shen, Yifei,Sun, Shuo,Shen, Enhui,Ye, Chu-Yu,Fan, Longjiang,Hua, Shuijin,Cai, Daguang,Timko, Michael P.,Zhu, Qian-Hao.

[8]Genetic analysis and fine mapping of the LOBED-LEAF 1 (BnLL1) gene in rapeseed (Brassica napus L.). Ni, Xiyuan,Ali, Basharat,Zhou, Weijun,Ni, Xiyuan,Huang, Jixiang,Zhao, Jianyi.

[9]Cold pretreatment enhances microspore embryogenesis in oilseed rape (Brassica napus L.). Gu, HH,Hagberg, P,Zhou, WJ.

[10]Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds. Shi, Jianghua,Lang, Chunxiu,Wang, Fulin,Wu, Xuelong,Liu, Renhu,Zheng, Tao,Chen, Jinqing,Wu, Guanting,Zhang, Dongqing.

[11]Analysis of QTL for seed oil content in Brassica napus by association mapping and QTL mapping. Fu, Ying,Zhang, Dongqing,Zhang, Yaofeng,Lin, Baogang,Hua, Shuijin,Ding, Houdong,Yu, Huasheng,Li, Jiana,Qian, Wei,Gleeson, Madeleine,Frauen, Martin.

作者其他论文 更多>>