您好,欢迎访问中国热带农业科学院 机构知识库!

Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava

文献类型: 外文期刊

作者: Hu, Wei 1 ; Yang, Hubiao; Yan, Yan 1 ; Wei, Yunxie 1 ; Tie, Weiwei 1 ; Ding, Zehong 1 ; Zuo, Jiao 1 ; Peng, Ming 2 ; Li, 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Inst Trop Biosci & Biotechnol, Key Lab Biol & Genet Resources Trop Crops, Xueyuan Rd 4, Haikou 571101, Hainan, Peoples R China

2.Chinese Acad Trop Agr Sci, Inst Trop Biosci & Biotechnol, Key Lab Biol & Genet Resources Trop

期刊名称:SCIENTIFIC REPORTS ( 影响因子:4.379; 五年影响因子:5.133 )

ISSN: 2045-2322

年卷期: 2016 年 6 卷

页码:

收录情况: SCI

摘要: The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response.

  • 相关文献
作者其他论文 更多>>