The Design of Monitoring and Warning System for the Environment of Tropical Crop Growth based on Multi-sensor
文献类型: 外文期刊
作者: Wang, Lingling 1 ; Li, Yuping 1 ; Luo, Hongxia 1 ; Fang, Jihua 1 ;
作者机构: 1.Chinese Acad Trop Agr Sci, Inst Informat & Technol, Danzhou 571737, Peoples R China
2.Key Lab Pract Res Trop Crops Informat Technol Hai, Danzhou 571737, Peoples R China
关键词: data monitoring;field environment;multi-sensor;tropical agriculture
期刊名称:PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS (AMEII 2016)
ISSN: 2352-5401
年卷期: 2016 年 73 卷
页码:
收录情况: SCI
摘要: Agricultural information technology is an emerging research direction with high effect agriculture developing. The paper proposes a design idea on monitoring and warning system for the environment of tropical crop growth based on technology of multi-sensor, database, computer interface, embedded programming, wireless sensor network, etc. The paper studies data criterion, tropical crop environment monitoring system, monitoring and early warning platform, and information system integration platform. The research mainly explores the relative importance of tropical crop growth and field environment, which have great significance in conducting the cultivation for high yielding, good quality and high efficiency.
- 相关文献
作者其他论文 更多>>
-
Early detection of rubber tree powdery mildew using UAV-based hyperspectral imagery and deep learning
作者:Zeng, Tiwei;Li, Yuan;Fu, Wei;Wang, Juan;Zhang, Xirui;Zeng, Tiwei;Wang, Yong;Yang, Yuqi;Liang, Qifu;Li, Yuan;Zhang, Huiming;Fu, Wei;Wang, Juan;Zhang, Xirui;Fang, Jihua;Li, Yuan;Fang, Jihua;Li, Yuan
关键词:Powdery mildew of rubber tree; Unmanned aerial vehicle; Hyperspectral imaging; Deep learning; Different spatial resolutions; Feature selection
-
Calibration of the Ångström-Prescott Model for Accurately Estimating Solar Radiation Spatial Distribution in Areas with Few Global Solar Radiation Stations: A Case Study of the China Tropical Zone
作者:Yu, Xuan;Li, Mao-Fen;Dai, Shengpei;Li, Hailiang;Luo, Hongxia;Zheng, Qian;Hu, Yingying;Yi, Xia;Li, Mao-Fen;Dai, Shengpei
关键词:angstrom ngstrom-Prescott; the between-groups linkage; Thiessen polygons; dry-wet season; the tropical zone of China
-
An Optimization Study on a Novel Mechanical Rubber Tree Tapping Mechanism and Technology
作者:Wang, Lingling;Huang, Chang;Li, Tuyu;Cao, Jianhua;Zheng, Yong;Wang, Lingling;Huang, Chang;Li, Tuyu;Cao, Jianhua;Zheng, Yong;Huang, Jiajian;Huang, Jiajian
关键词:Hevea brasiliensis; rubber tapping management; old rubber line; hand-held mechanical tapping machine; optimization design; tapping effect
-
Retrieving leaf area index of rubber plantation in Hainan Island using empirical and neural network models with Landsat images
作者:Dai, Shengpei;Luo, Hongxia;Hu, Yingying;Zheng, Qian;Li, Hailiang;Li, Maofen;Yu, Xuan;Dai, Shengpei;Luo, Hongxia;Hu, Yingying;Zheng, Qian;Li, Hailiang;Li, Maofen;Yu, Xuan;Chen, Bangqian
关键词:leaf area index; rubber trees (Hevea brasiliensis); Landsat images; empirical model; neural network model; Hainan Island
-
Automatically Extracting Rubber Tree Stem Shape from Point Cloud Data Acquisition Using a B-Spline Fitting Program
作者:Li, Tuyu;Zheng, Yong;Huang, Chang;Cao, Jianhua;Wang, Lingling;Wang, Guihua
关键词:rubber tree; laser-ranging; point cloud data; contour curve; B-spline; MATLAB
-
Monitoring the Severity of Rubber Tree Infected with Powdery Mildew Based on UAV Multispectral Remote Sensing
作者:Zeng, Tiwei;Li, Yuan;Yin, Chenghai;Fu, Wei;Zhang, Xirui;Zeng, Tiwei;Zhang, Huiming;Li, Yuan;Yin, Chenghai;Liang, Qifu;Fu, Wei;Wang, Juan;Zhang, Xirui;Li, Yuan;Fang, Jihua;Li, Yuan;Fang, Jihua
关键词:UAV; multispectral images; powdery mildew diseases; rubber tree; multi-feature fusion; PCC-SBS feature selection; machine learning
-
Recognition of Rubber Tree Powdery Mildew Based on UAV Remote Sensing with Different Spatial Resolutions
作者:Zeng, Tiwei;Yin, Chenghai;Fu, Wei;Zhang, Xirui;Zeng, Tiwei;Yin, Chenghai;Fu, Wei;Zhang, Huiming;Wang, Juan;Zhang, Xirui;Fang, Jihua;Li, Yuan;Fang, Jihua;Li, Yuan
关键词:powdery mildew of rubber tree; unmanned aerial vehicle (UAV); different spatial resolutions; feature selection; machine learning