您好,欢迎访问中国热带农业科学院 机构知识库!

Responses of Soil Nematode Abundance and Diversity to Long-Term Crop Rotations in Tropical China

文献类型: 外文期刊

作者: Zhong Shuang 1 ; Zeng Huicai 3 ; Jim Zhiqiang 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Haikou Expt Stn, Haikou 570102, Peoples R China

2.Hainan Key Lab Banana Genet Improvement, Haikou 570102, Peoples R China

3.Chinese Acad Trop Agr Sci, Inst Trop Biosci & Biotechnol, Haikou 570102, Peoples R China

关键词: banana;ecological index;nematode community;rotation system;taxon;trophic group

期刊名称:PEDOSPHERE ( 影响因子:3.911; 五年影响因子:4.814 )

ISSN: 1002-0160

年卷期: 2015 年 25 卷 6 期

页码:

收录情况: SCI

摘要: A field experiment was carried out from 2003 to 2013 in the Wanzhong Farm of the Hainan Island, China, to determine the effects of two long-term banana rotations on the abundance and trophic groups of soil nematode communities in the island. The experiment was set out as a randomized complete block design with three replications of three treatments: banana-pineapple rotation (AB), banana-papaya rotation (BB) and banana monoculture (CK) in a conventional tillage system. Soil samples were taken at depths of 0-10, 10-20 and 20-30 cm, and nematodes were extracted by a modified cotton-wool filter method and identified to the genus level. Nematode ecological indices of Shannon-Weaver diversity (H'), dominance index (lambda), maturity index (MI), plant parasite index (PPI), structure index (SI), enrichment index (EI), and channel index (CI) were calculated. A total of 28 nematode genera with relative abundance over 0.1% were identified, among which Tylenchus and Paratylenchus in the AB, Thonus in the BB, Tylenchus and Helicotylenchus in the CK were the dominant genera. The rotation soils favored bacterivores, fungivores and omnivores-predators with high colonizer-persister (c-p) values. Soil food web in the rotation systems was highly structured, mature and enriched as indicated by SI, MI and DI values, respectively. Higher abundance of bacterivores and lower values of CI suggested that the soil food web was dominated by a bacterial decomposition pathway in rotation soils. Nematode diversity was much higher after a decade of rotation. Soil depth had significant effects on the abundance of soil nematodes, but only on two nematode ecological indices (lambda and MI).

  • 相关文献

[1]Novel soil fumigation strategy suppressed plant-parasitic nematodes associated with soil nematode community alterations in the field. Su, Lanxi,Shen, Zongzhuan,Ou, Yannan,Tao, Chengyuan,Li, Rong,Shen, Qirong,Su, Lanxi,Ruan, Yunze.

[2]Isolation of Antagonistic Endophytes from Banana Roots against Meloidogyne javanica and Their Effects on Soil Nematode Community. Su, Lanxi,Shen, Zongzhuan,Tao, Chengyuan,Chao, Yifan,Li, Rong,Shen, Qirong,Su, Lanxi,Ruan, Yunze. 2017

[3]RAPD analysis of 33 varieties of banana. Su, J,Zhou, P,Zheng, XQ,Huang, BZ,Li, FN. 2001

[4]The role of jasmonic acid and lipoxygenase in propylene-induced chilling tolerance on banana fruit. Liao, Fen,Cui, Sufen,Zhang, Ezhen,Huang, Maokang,He, Quanguang,Hong, Keqian,Zou, Ru. 2014

[5]Expression of ACO1, ERS1 and ERF1 genes in harvested bananas in relation to heat-induced defense against Colletotrichum musae. Zhu, Xiangfei,Wang, Aiping,Zhu, Shijiang,Zhang, Lubin,Zhang, Lubin. 2011

[6]The Key Technology Research on Automatic Monitoring and Remote Controlling of Water and Fertilizer on Banana. Wang, Lingling,Luo, Hongxia,Fang, Jihua,Wang, Lingling,Luo, Hongxia,Fang, Jihua. 2015

[7]Molecular cloning and expression analysis of eight calcium-dependent protein kinase (CDPK) genes from banana (Musa acuminata L. AAA group, cv. Cavendish). Wang, Z.,Li, J.,Jia, C.,Xu, B.,Jin, Z.,Jin, Z..

[8]The effects of different disease-resistant cultivars of banana on rhizosphere microbial communities and enzyme activities. Sun, Jianbo,Peng, Ming,Wang, Yuguang,Li, Wenbin,Xia, Qiyu.

[9]Molecular cloning and expression analysis of the MaASR1 gene in banana and functional characterization under salt stress. Miao, Hongxia,Wang, Yuan,Liu, Juhua,Jia, Caihong,Hu, Wei,Xu, Biyu,Sun, Peiguang,Jin, Zhiqiang. 2014

[10]Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas. Dong, Chen,Hu, Huigang,Xie, Jianghui,Dong, Chen,Hu, Huigang,Xie, Jianghui.

[11]Isolation and characterization of nucleotide-binding site and C-terminal leucine-rich repeat-resistance gene candidates in bananas. Lu, Y.,Li, H. P.,Lu, Y.,Xie, Y. X.,Zhang, X.,Pu, J. J.,Qi, Y. X.,Xu, W. H.. 2011

[12]Analysis of Soluble Ca Content in Banana Pulp Based on Pretreatment of Digestion Model in Vitro. Li Ji-hua,Huang Mao-fang,Tang Yong-fu,Fu Tiao-kun,Li Ji-hua,Huang Mao-fang,Tang Yong-fu,Li Ji-hua,Huang Mao-fang,Xu Fei. 2010

[13]Research on the Antioxidant Activity of Phenols and Active Oxygen Metabolism during Development of Brazil Banana. Hu, Hui-Gang,Hu, Hui-Gang. 2013

[14]Diversity and chemotaxis of soil bacteria with antifungal activity against Fusarium wilt of banana. Li, Ping,Ma, Li,Feng, Yun Li,Mo, Ming He,Li, Ping,Ma, Li,Feng, Yun Li,Mo, Ming He,Yang, Fa Xiang,Dai, Hao Fu,Zhao, You Xing. 2012

[15]Effect of oxalic acid on antibrowning of banana (Musa spp., AAA group, cv. 'Brazil') fruit during storage. Huang, Hua,Zhu, Qinqin,Yang, Bao,Duan, Xuewu,Jiang, Yueming,Huang, Hua,Zhu, Qinqin,Zhang, Zhengke. 2013

[16]Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana. Hu, Wei,Hou, Xiaowan,Yan, Yan,Tie, Weiwei,Ding, Zehong,Wei, Yunxie,Liu, Juhua,Miao, Hongxia,Lu, Zhiwei,Li, Meiying,Xu, Biyu,Huang, Chao,Jin, Zhiqiang. 2015

[17]Design of Banana Diseases and Pests Intelligent Diagnosis Software. Zhang, Xiu-Hong,Lin, Yong,Xie, Yi-Xian. 2016

[18]Cloning and expression analysis of rubredoxin from cold-treated banana leaves. Yuan, K. H.,Cheng, P.,Zhang, L. L.,Qi, J. F.,Zhang, X. B.,Zhou, L. Y.,Zhang, Y. D.,Feng, R. J.,Lu, L. F.,Ren, Y.,Xu, X. L.. 2010

[19]Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana. Li, Meiying,Xu, Biyu,Yang, Xiaoliang,Xia, Qiyu,He, Pingping,Xiao, Susheng,Guo, Anping,Hu, Wei,Jin, Zhiqiang,Ren, Licheng,Jin, Zhiqiang. 2016

[20]A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses. Xu, Yi,Jin, Zhiqiang,Hu, Wei,Liu, Juhua,Zhang, Jianbin,Jia, Caihong,Miao, Hongxia,Xu, Biyu,Jin, Zhiqiang. 2014

作者其他论文 更多>>