您好,欢迎访问中国热带农业科学院 机构知识库!

In situ Pollen Germination and Artificial Pollination Compatibility in Cassava (Manihot esculenta Crantz)

文献类型: 外文期刊

作者: Lai, Hanggui 2 ; Chen, Xia 2 ; Chen, Zheng 3 ; Zhou, Yaqiu 3 ; Ou, Wenjun 1 ; Li, Kaimian 1 ; Ye, Jianqiu 1 ; Chen, Songb 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Crops Genet Resources Inst, Danzhou 571737, Peoples R China

2.Hainan Univ, Coll Agron, Haikou 570228, Hainan, Peoples R China

3.Hainan Univ, Coll Appl Sci & Technol, Danzhou 571737, Peoples R China

关键词: Cassava;pollen germination;pollination compatibility;fruit set

期刊名称:MATERIAL SCIENCE, CIVIL ENGINEERING AND ARCHITECTURE SCIENCE, MECHANICAL ENGINEERING AND MANUFACTURING TECHNOLOGY II

ISSN: 1660-9336

年卷期: 2014 年 651-653 卷

页码:

收录情况: SCI

摘要: Cassava cultivars are self-compatible, sufficient pollination and fertilization are important factors affecting the rate of fruit set and fruit quality, but the effects of compatible pollination relationships on cassava pollen development and fruit set are poorly understood. In the present study, in situ pollen germination and compatible relationship were investigated by using self-pollination and cross-pollination between two cassava cultivars (SC5 and SC7). The observation in situ pollen germination was carried out with toluidine blue staining method under the fluorescence microscope. The result shows that after self-pollination for 20 min, the pollens, released from SC5 anthers, started to produce pollen tubes and the maximum germination rate (GR) was 39.2%. It cost 60 min for the pollen tubes carrying sperm cells to penetrate through the pistil extracellular matrices of the transmitting tract to the ovary. However, after cross-pollination for 10 min, the pollens started to germinate and maximum GR was 66.8%. It took 30 min for the pollen tube trip to reach ovary. Additionally, the analysis of fruit set indicated that pollination compatibility in cross-pollination was significantly higher than that in self-pollination. This work provided cassava cross breeding a clue that foreign pollen may facilitate fertilization and increase fruit set.

  • 相关文献

[1]八个木薯品种(系)储藏根采后耐贮性生化指标的变化. 文明富,胡梅珍,陈新,王海燕,卢诚,王文泉. 2013

[2]Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava. Fu, Lili,Ding, Zehong,Han, Bingying,Hu, Wei,Li, Yajun,Zhang, Jiaming. 2016

[3]Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses. Yu, Y.,Cui, Y. C.,Ren, C.,Rocha, P. S. C. F.,Wang, M. L.,Xia, X. J.,Yu, Y.,Ren, C.,Peng, M.,Xu, G. Y.. 2016

[4]Structure, Expression, and Functional Analysis of the Hexokinase Gene Family in Cassava. Geng, Meng-Ting,Wang, Yun-Lin,Hu, Xin-Wen,Yao, Yuan,Li, Rui-Mei,Fu, Shao-Ping,Duan, Rui-Jun,Liu, Jiao,Guo, Jian-Chun,Wu, Xiao-Hui,Sun, Chong. 2017

[5]Somatic Embryogenesis and Organogenesis of Biofuel Plant Cassava (Manihot esculenta Crantz) Chinese Cultivars. Li, Ruimei,Duan, Ruijun,Ji, Yimeng,Xi, Dujuan,Liu, Jiao,Guo, Jianchun,Fu, Shaoping,Li, Ruimei,Duan, Ruijun,Ji, Yimeng,Xi, Dujuan,Liu, Jiao,Guo, Jianchun,Fu, Shaoping,Ji, Yimeng,Xi, Dujuan,Liu, Jiao,Zhang, Peng. 2012

[6]Chilling acclimation provides immunity to stress by altering regulatory networks and inducing genes with protective functions in Cassava. Zeng, Changying,Chen, Xin,Zhou, Yufei,Bo, Weiping,Song, Shun,Deng, Deli,Guo, Xin,Wang, Bin,Wang, Wenquan,Peng, Ming,Chen, Zheng,Xia, Jing,Zhang, Kevin,Zhou, Junfei,Peng, Hai,Zhang, Weixiong,Chen, Zheng,Xia, Jing,Zhang, Kevin,Zhang, Weixiong,Zhang, Weixiong. 2014

[7]MeSAUR1, Encoded by a Small Auxin-Up RNA Gene, Acts as a Transcription Regulator to Positively Regulate ADP-Glucose Pyrophosphorylase Small Subunit1a Gene in Cassava. Ma, Ping'an,Liu, Chen,Meng, Yuhong,Ma, Ping'an,Chen, Xin,Liu, Chen,Meng, Yuhong,Xia, Zhiqiang,Zeng, Changying,Lu, Cheng,Wang, Wenquan,Ma, Ping'an,Chen, Xin,Liu, Chen,Meng, Yuhong,Xia, Zhiqiang,Zeng, Changying,Lu, Cheng,Wang, Wenquan. 2017

[8]Production of calcium gluconate from cassava by Penicillium citrinum SCG-112. Sun, Hai-Yan,Zhao, Pingjuan,Li, Juanhua,Liu, Enshi,Peng, Ming,Sun, Hai-Yan,Zhao, Pingjuan,Peng, Ming. 2011

[9]Quantitative Trait Locus Analysis for Yield Traits of Cassava (Manihot esculenta Crantz). Yan, Qingxiang,Li, Kaimian,Zhang, Xueqin,Ye, Jianqiu,Chen, Songbi,Li, Qing X.,Huang, Dongyi. 2014

[10]Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava. Wei, Yunxie,Shi, Haitao,Xia, Zhiqiang,Tie, Weiwei,Ding, Zehong,Yan, Yan,Wang, Wenquan,Hu, Wei,Li, Kaimian. 2016

[11]Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes. Hu, Wei,Xia, Zhiqiang,Yan, Yan,Ding, Zehong,Tie, Weiwei,Zou, Meiling,Wei, Yunxie,Lu, Cheng,Hou, Xiaowan,Wang, Wenquan,Peng, Ming,Wang, Lianzhe. 2015

[12]Cloning and Analysis of Vacuolar Invertase Gene (MeVINV2) Promoter from Cassava (Manihot Esculenta Crantz). Liu, Jiao,Hu, Yan-ping,Xia, Wen-rui,Yao, Yuan,Zhou, Yang,Fu, Shao-ping,Duan, Rui-jun,Li, Rui-mei,Guo, Jian-chun. 2014

[13]Isolation and Characterization of Ftsz Genes in Cassava. Geng, Meng-Ting,Yao, Yuan,Li, Rui-Mei,Fu, Shao-Ping,Duan, Rui-Jun,Liu, Jiao,Guo, Jian-Chun,Geng, Meng-Ting,Min, Yi,Chen, Xia,Fan, Jie,Yuan, Shuai,Wang, Lei,Zhang, Fan,Shang, Lu,Wang, Yun-Lin,Hu, Xin-Wen,Sun, Chong. 2017

[14]Change in physicochemical traits of cassava roots and starches associated with genotypes and environmental factors. Gu, Bi,Yao, Qingqun,Li, Kaimian,Chen, Songbi. 2013

[15]Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR. Hu, Meizhen,Wang, Wenquan,Hu, Meizhen,Xia, Zhiqiang,Zhou, Xincheng,Wang, Wenquan,Hu, Meizhen,Wang, Wenquan,Hu, Wenbin. 2016

[16]Environmental suitability of the red spider mite Tetranchus cinnabarinus (Acari: Tetranychidae) among cassava in China. Lu, Hui,Lu, Fuping,Xu, Xuelian,Chen, Qing. 2012

[17]Distribution and pathogen identification of cassava brown leaf spot in China. Pei, Y. L.,Shi, T.,Li, C. P.,Liu, X. B.,Cai, J. M.,Huang, G. X.. 2014

[18]Cloning and Sequence Analysis of Two cDNA Encoding invertase Inhibitors from Cassava (Manihot esculenta Crantz). Geng, Mengting,Yao, Yuan,Wu, Xiaohui,Fu, Shaoping,Guo, Jianchun. 2013

[19]The Effects of Calcium on The In Vitro Cassava Storage Root Formation. Yao, Yuan,Min, Yi,Geng, Mengting,Wu, Xiahui,Hu, Xinwen,Yao, Yuan,Min, Yi,Geng, Mengting,Wu, Xiahui,Fu, Shaoping,Guo, Jianchun,Yao, Yuan,Min, Yi,Geng, Mengting,Wu, Xiahui,Fu, Shaoping,Guo, Jianchun. 2013

[20]Endogenous small-noncoding RNAs and their roles in chilling response and stress acclimation in Cassava. Xia, Jing,Chen, Zheng,Zhang, Kevin,Zhou, Yufei,Song, Shun,Zhou, Junfei,Peng, Hai,Zhang, Weixiong,Zeng, Changying,Chen, Xin,Zhou, Yufei,Song, Shun,Lu, Cheng,Yang, Ruiju,Yang, Zi,Wang, Wenquan,Peng, Ming,Xia, Jing,Chen, Zheng,Zhang, Kevin,Zhang, Weixiong,Zhang, Weixiong. 2014

作者其他论文 更多>>