您好,欢迎访问中国热带农业科学院 机构知识库!

Efficient isolation of high quality RNA from tropical palms for RNA-seq analysis

文献类型: 外文期刊

作者: Xiao, Yong 1 ; Yang, Yaodong 1 ; Cao, Hongxing 1 ; Fan, Haikuo 1 ; Ma, Zilong 2 ; Lei, Xintao 1 ; Mason, Annaliese S.; 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Coconuts Res Inst, Wenchang 571339, Hainan, Peoples R China

2.Chinese Acad Trop Agr Sci, Inst Trop Biosci & Biotechnol, Haikou 571101, Hainan, Peoples R China

3.Hainan Key Lab Trop Oil Crops Biol, Wenchang 571339, Hainan, Peoples R China

4.Univ Queensland, Sch Agr & Food Sci, Brisbane, Qld, Australia

5.Univ Queensland, Ctr Integrat Leg

关键词: RNA isolation;RNA-seq;Cocos nucifera;Palmaceace;rRNA

期刊名称:PLANT OMICS ( 影响因子:0.777; 五年影响因子:0.802 )

ISSN: 1836-0661

年卷期: 2012 年 5 卷 6 期

页码:

收录情况: SCI

摘要: Currently, RNA-seq as a high throughput technology is being widely applied to various species to elucidate the complexity of the transcriptome and to discover large number of novel genes. However, the technology has had poor success in elucidating the transcriptome of tropical palms, as it is difficult to isolate high quality RNA from tropical palm tissues due to their high polysaccharide and polyphenol content. Here, we developed an RNA-isolation protocol for tropical palms, the MRIP method (Methods for RNA Isolation from Palms). The integrity of the RNA molecules extracted using this protocol was determined to be of high quality by means of gel electrophoresis and Agilent 2100 Bioanalyzer microfluidic electrophoresis chip examination with a RIN (RNA Integrity Number) value of more than 9, indicating that the mRNAs were of good integrity. Subsequently the isolated RNA was used for transcription analysis without further purification. With Illumina sequencing, we obtained 54.9 million short reads and then conducted de novo assembly to gain 57,304 unigenes with an average length of 752 base pairs. Moreover, the RNA isolated with this protocol was also successfully used for real-time RT-PCR. These results suggested that the RNA isolated was suitable for Illumina RNA sequencing and quantitative real-time RT-PCR. Furthermore, this method was also successful in isolating total RNA from the leaves of various Palmaceae species.

  • 相关文献

[1]A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). Tang, Chaorong,Qi, Jiyan,Li, Heping,Zhang, Cunliang,Wang, Yuekun. 2007

[2]Selection of reference genes for quantitative real-time PCR in Cocos nucifera during abiotic stress. Xia, Wei,Liu, Zheng,Yang, Yaodong,Xiao, Yong,Zhao, Songlin,Mason, Annaliese S.,Mason, Annaliese S.,Ma, Zilong. 2014

[3]Development of microsatellite markers in Cocos nucifera and their application in evaluating the level of genetic diversity of Cocos nucifera. Xiao, Yong,Luo, Yi,Yang, Yaodong,Fan, Haikuo,Xia, Wei,Zhao, Songlin,Qiao, Fei,Fan, Haikuo,Sager, Ross,Mason, Annaliese S.,Mason, Annaliese S.. 2013

[4]Genetic diversity and differentiation of the Hainan Tall coconut (Cocos nucifera L.) as revealed by inter-simple sequence repeat markers. Pan, Kun,Fan, Haikuo,Wu, Yi,Tang, Longxiang,Wang, Wenquan,Wang, Haiyan,Pan, Kun. 2018

[5]玉米光合突变体hcf136(high chlorophyll fluorescence 136)的转录组分析. 吴庆飞,秦磊,董雷,丁泽红,李平华,杜柏娟. 2018

[6]辣椒不同发育时期果实着色的转录组分析. 秦于玲,申龙斌,曹振木. 2020

[7]玉米光合突变体bsd2(bundle sheath defective II)的转录组分析. 江芳,丁泽红,董雷,李平华. 2016

[8]橡胶树生殖发育相关基因的RNA-Seq转录组分析. 位明明,王亚杰,李维国. 2017

[9]应用RNA-seq数据开展鸭基因组可变剪接的鉴定与分析. 徐铁山,顾丽红,侯水生,叶保国. 2016

[10]应用RNA-seq技术优化鸭基因结构及预测新转录本. 叶保国,徐铁山. 2015

[11]利用RNA-seq技术筛选影响文昌鸡腹脂沉积的重要候选基因. 吴红芬,张颖,侯冠彧,王颖,汪刘浩,吴科榜,那威. 2023

[12]De Novo Assembly and Characterization of Pericarp Transcriptome and Identification of Candidate Genes Mediating Fruit Cracking in Litchi chinensis Sonn.. Li, Wei-Cai,Zhang, Hong-Na,Shi, Sheng-You,Liu, Li-Qin,Shu, Bo,Liang, Qing-Zhi,Xie, Jiang-Hui,Wei, Yong-Zan,Wu, Jian-Yang. 2014

[13]Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava. Fu, Lili,Ding, Zehong,Han, Bingying,Hu, Wei,Li, Yajun,Zhang, Jiaming. 2016

[14]Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava. Wei, Yunxie,Shi, Haitao,Xia, Zhiqiang,Tie, Weiwei,Ding, Zehong,Yan, Yan,Wang, Wenquan,Hu, Wei,Li, Kaimian. 2016

[15]Comparative transcriptome analysis of latex from rubber tree clone CATAS8-79 and PR107 reveals new cues for the regulation of latex regeneration and duration of latex flow. Chao, Jinquan,Chen, Yueyi,Wu, Shaohua,Tian, Wei-Min. 2015

[16]Expression Divergence of Duplicate Genes in the Protein Kinase Superfamily in Pacific Oyster. Gao, Dahai,Ko, Dennis C.,Wang, Liuyang,Tian, Xinmin,Yang, Guang. 2015

[17]Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava. Han, Bingying,Fu, Lili,Zhang, Dan,He, Xiuquan,Chen, Qiang,Peng, Ming,Zhang, Jiaming. 2016

[18]Transcriptomes of Arbuscular Mycorrhizal Fungi and Litchi Host Interaction after Tree Girdling. Shu, Bo,Li, Weicai,Liu, Liqin,Wei, Yongzan,Shi, Shengyou. 2016

[19]An RNA-Seq Analysis of Grape Plantlets Grown in vitro Reveals Different Responses to Blue, Green, Red LED Light, and White Fluorescent Light. Li, Chun-Xia,Dong, Rui-Qi,Khalil-Ur-Rehman, Muhammad,Tao, Jian-Min,Xu, Zhi-Gang,Wang, Lian-Zhen,Chang, Sheng-Xin,Wang, Lian-Zhen. 2017

[20]Transcriptome analysis of Meloidogyne incognita encumbered by Pasteuria penetrans endospores provides new insights into bacteria and nematode interaction. Zou, Xiaoxiao,Lu, Yan,Sun, Qianguang,Huang, Huiqin,Liu, Min,Bao, Shixiang.

作者其他论文 更多>>