您好,欢迎访问中国热带农业科学院 机构知识库!

Cloning of a carbendazim-resistant gene from Colletotrichum gloeosporioides of mango in South China

文献类型: 外文期刊

作者: Ru-Lin, Zhan 1 ; Jun-Sheng, Huang 2 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Inst Environm & Plant Protect, State Key Lab Trop Crop Biotechnol, Haikou 571101, Peoples R China

2.Chinese Acad Trop Agr Sci, So Subtrop Crops Res Inst, Zhanjiang 524091, Peoples R China

关键词: Colletotrichum gloeosporioides;mango;MBC-resistant gene;allele-specific PCR;enzyme assay;detection

期刊名称:AFRICAN JOURNAL OF BIOTECHNOLOGY ( 影响因子:0.573; 五年影响因子:0.794 )

ISSN: 1684-5315

年卷期: 2007 年 6 卷 2 期

页码:

收录情况: SCI

摘要: Mango anthracnose caused by Colletotrichum gloeosporioides is an important disease and prevalent in tropical regions of China. High carbendazim (MBC)-resistant field strains were tested and collected. The fragments of tub2 were cloned, sequenced, and alignments were carried out between MBC-resistant and wild-type strains of C. gloeosporioides. The results showed that the amino acids were altered at residues 181,198, 237 and 363. All of the mutant positions were detected by allele-specific PCR. The allele-specific fragments were amplified in MBC-resistant strains by the positive primers but not in wildtype strains. On the contrary, the allele-specific fragments were amplified in wild-type strains by the negative primers but not in MBC-resistant strains. The preliminary findings proved that the point mutation occurred at amino acid codon 198 causing a change from glutamic acid (GAG) to alanine (GCG), which is closely associated with conferring MBC-resistance in the field. An enzyme assay was employed to further test the above results. It involved an Acc restriction site (CGCG) at the positions of the amino acid residues at 197 and 198 (GACGAG -> GACGCG) in MBC-resistant strains, in which Acc digested a 329 bp fragment into 107 and 222 bp, while the fragments from wild-type strains remained undigested. Based on the above assays, all of the MBC-resistant and wild-type strains were detected successfully. It strongly suggested that the altered amino acid residue at position 198 played the leading role in conferring MBC-resistance in Mango anthracnose in south China.

  • 相关文献

[1]Antifungal Activity of Compounds Extracted from Cortex Pseudolaricis against Colletotrichum gloeosporioides. Zhang, Jing,Yuan, En-Lin,Ye, Huo-Chun,Zhang, Zheng-Ke,Yan, Chao,Feng, Gang,Zhang, Jing,Yuan, En-Lin,Ye, Huo-Chun,Zhang, Zheng-Ke,Yan, Chao,Feng, Gang,Yan, Li-Ting,Liu, Ying-Qian,Yuan, En-Lin,Ding, Hai-Xin.

[2]beta-Aminobutyric acid induces resistance of mango fruit to postharvest anthracnose caused by Colletotrichum gloeosporioides and enhances activity of fruit defense mechanisms. Zhang, Zhengke,Gao, Zhaoyin,Li, Min,Hu, Meijiao,Yang, Dongping,Yang, Bo,Zhang, Zhengke,Jiang, Yueming. 2013

[3]咪鲜胺和吡唑醚菌酯对杧果炭疽病菌的复配作用研究. 钟祯凯,康浩,吴诚,杨石有,刘晓妹. 2017

[4]解淀粉芽胞杆菌JNC2摇瓶发酵条件优化. 梁艳琼,吴伟怀,习金根,李锐,郑金龙,黄兴,贺春萍,易克贤. 2019

[5]咪鲜胺和吡唑醚菌酯对杜果炭疽病菌的复配作用研究. 钟祯凯,康浩,吴诚,杨石有,刘晓妹,蒲金基,谢艺贤,张贺. 2017

[6]Transcriptome characterization and expression profiles of the related defense genes in postharvest mango fruit against Colletotrichum gloeosporioides. Hong, Keqian,Gong, Deqiang,Zhang, Lubin,Hu, Huigang,Jia, Zhiwei,Gu, Hui,Song, Kanghua. 2016

[7]The analysis of T-DNA insertional Colletotrichum gloeosporioides in Stylo pathogenicity-weakened mutant strain 1681. Xu, Peidong,Xu, Peidong,Zheng, Xiaolan,Tang, Wen,Li, Qiujie,Wu, Weihuai,Xi, Jingen,Liang, Yanqiong,Zheng, Jinlong,Li, Rui,Zhang, Chicheng,Yi, Kexian,He, Chunping,Tang, Wen,Li, Qiujie,Zhang, Chicheng,Yi, Kexian,Zhang, Xiaobo,Zhang, Xiaobo. 2015

[8]The Colletotrichum gloeosporioides perilipin homologue CAP 20 regulates functional appressorial formation and fungal virulence. Lin, Chunhua,Liu, Xianbao,Shi, Tao,Li, Chaoping,Huang, Guixiu,Lin, Chunhua. 2018

[9]Alterations of growth, antioxidant system and gene expression in Stylosanthes guianensis during Colletotrichum gloeosporioides infection. Wang, Hui,Jia, Yanxing,Luo, Lijuan,Chen, Zhijian,Liu, Guodao,Bai, Changjun,Qiu, Hong. 2017

[10]Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis. Cai, Zhiying,Cai, Zhiying,Lin, Chunhua,Shi, Tao,Chen, Yipeng,Huang, Guixiu,Cai, Zhiying,Li, Guohua,Zhai, Ligang. 2013

[11]The laccase gene (LAC1) is essential for Colletotrichum gloeosporioides development and virulence on mango leaves and fruits. Wei, Yunxie,Liu, Yanan,Zhou, Fangxue,Zhang, Kaili,Liu, Xiaomei,Wei, Yunxie,Liu, Yanan,Zhou, Fangxue,Zhang, Kaili,Liu, Xiaomei,Pu, Jinji,Zhang, He. 2017

[12]Purification and identification of cutinases from Colletotrichum kahawae and Colletotrichum gloeosporioides. Chen, Zhenjia,Franco, Catarina F.,Baptista, Ricardo P.,Cabral, Joaquim M. S.,Coelho, Ana V.,Rodrigues, Carlos J., Jr.,Melo, Eduardo P..

[13]Colletotrichum gloeosporioides can overgrow Colletotrichum kahawae on green coffee berries first inoculated with C-kahawae. Chen, ZJ,Liang, JS,Rodrigues, CJ.

[14]Effects of Agave Plant Extracts on C. gloeosporioides and Characterization of Inhibitory Compounds. Chang Jin-mei,Zhang Lu-bin,Zhan Ru-lin. 2014

[15]Development of a sensitive molecular detection assay for mango malformation disease caused by Fusarium mangiferae. Wu, Jingbo,Liu, Feng,Zhan, Rulin,Li, Guoping,Zhao, Yanlong,Chang Jinmei,He, Yanbiao.

[16]Transcription Profiling Analysis of Mango-Fusarium Mangiferae Interaction. Liu, Feng,Wu, Jing-bo,Zhan, Ru-lin,Ou, Xiong-chang. 2016

[17]Development of EST-SSR and TRAP markers from transcriptome sequencing data of the mango. Luo, C.,Wu, H. X.,Yao, Q. S.,Wang, S. B.,Xu, W. T.. 2015

[18]Research on RWC Variation Regularity of 'Jinhuang' Mango (Mangifera Indica L). Liu Debing,Liu Guoyin,Wei Junya,Chen Yayuan. 2011

[19]Hot Water Treatment Maintains Normal Ripening and Cell Wall Metabolism in Mango (Mangifera indica L.) Fruit. Zhang, Zhengke,Gao, Zhaoyin,Li, Min,Hu, Meijiao,Gao, Hui,Yang, Dongping,Yang, Bo. 2012

[20]Effect of benzo-thiadiazole-7-carbothioic acid S-methyl ester (BTH) treatment on the resistant substance in postharvest mango fruits of different varieties. Pan, Yong-Gui,Liu, Xin-Hua,Pan, Yong-Gui. 2011

作者其他论文 更多>>