您好,欢迎访问中国热带农业科学院 机构知识库!

Root distribution and nutrient uptake in crop-forage systems on Andean hillsides

文献类型: 外文期刊

作者: Zhiping, Q 1 ; Rao, IM 2 ; Ricaurte, J 2 ; Amezquita, E 2 ; Sanz, JI 2 ; Kerridge, PC 2 ;

作者机构: 1.Ctr Int Agr Trop, Communities & Watersheds Project, AA-6713 Cali, Colombia

2.Ctr Int Agr Trop, Communities & Watersheds Project, AA-6713 Cali, Colombia; Chinese Acad Trop Agr Sci, Trop Field Crops & Anim Husb Res Inst, Hainan 571737, Peoples R China

关键词: cassava;cover legumes;elephant grass;hillsides;nutrient acquisition;root distribution;soil loss

期刊名称:JOURNAL OF SUSTAINABLE AGRICULTURE ( 影响因子:1.372; 五年影响因子:0.893 )

ISSN: 1044-0046

年卷期: 2004 年 23 卷 4 期

页码:

收录情况: SCI

摘要: Root growth and distribution of crop and forage components of production systems on hillsides Could have important effects on nutrient acquisition and plant growth, as well as on sod loss. A long-term field experiment was established in 1994 in the Andean hillsides region Ad of Cauca, Colombia. Soil at the site is medium- to fine-textured Andisol derived from volcanic-ash deposits. Four treatments-cassava monocrop, cassava + cover legumes intercrop, elephant grass forage, and imperial grass forage-were selected to determine differences in dry matter partitioning, leaf area index, nutrient composition, root distribution (0-80 cm soil depth), nutrient acquisition and soil loss. Root biomass of the cassava + cover legumes intercrop was 44% greater than that of the cassava monocrop. The presence of cover legumes not only reduced soil loss but also improved potassium acquisition by cassava. Among the two forage systems, elephant grass had greater root biomass (9.3 t/ha) than the imperial grass (4.2 t/ha). The greater root length density (per unit soil volume) of the former contributed to superior acquisition of nitrogen, phosphorus, potassium and calcium from soil. In addition, the abundance of very fine roots in the elephant grass forage system in the topsoil layers reduced the loss of soil from the steep slopes. These results indicate that (1) the presence of cover legumes can improve potassium acquisition by cassava; and (ii) the use of elephant grass as a forage grass can reduce Soil loss in Andean hillsides. (C) 2004 by The Haworth Press, Inc. All rights reserved.

  • 相关文献

[1]八个木薯品种(系)储藏根采后耐贮性生化指标的变化. 文明富,胡梅珍,陈新,王海燕,卢诚,王文泉. 2013

[2]Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava. Fu, Lili,Ding, Zehong,Han, Bingying,Hu, Wei,Li, Yajun,Zhang, Jiaming. 2016

[3]Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses. Yu, Y.,Cui, Y. C.,Ren, C.,Rocha, P. S. C. F.,Wang, M. L.,Xia, X. J.,Yu, Y.,Ren, C.,Peng, M.,Xu, G. Y.. 2016

[4]Structure, Expression, and Functional Analysis of the Hexokinase Gene Family in Cassava. Geng, Meng-Ting,Wang, Yun-Lin,Hu, Xin-Wen,Yao, Yuan,Li, Rui-Mei,Fu, Shao-Ping,Duan, Rui-Jun,Liu, Jiao,Guo, Jian-Chun,Wu, Xiao-Hui,Sun, Chong. 2017

[5]Somatic Embryogenesis and Organogenesis of Biofuel Plant Cassava (Manihot esculenta Crantz) Chinese Cultivars. Li, Ruimei,Duan, Ruijun,Ji, Yimeng,Xi, Dujuan,Liu, Jiao,Guo, Jianchun,Fu, Shaoping,Li, Ruimei,Duan, Ruijun,Ji, Yimeng,Xi, Dujuan,Liu, Jiao,Guo, Jianchun,Fu, Shaoping,Ji, Yimeng,Xi, Dujuan,Liu, Jiao,Zhang, Peng. 2012

[6]Chilling acclimation provides immunity to stress by altering regulatory networks and inducing genes with protective functions in Cassava. Zeng, Changying,Chen, Xin,Zhou, Yufei,Bo, Weiping,Song, Shun,Deng, Deli,Guo, Xin,Wang, Bin,Wang, Wenquan,Peng, Ming,Chen, Zheng,Xia, Jing,Zhang, Kevin,Zhou, Junfei,Peng, Hai,Zhang, Weixiong,Chen, Zheng,Xia, Jing,Zhang, Kevin,Zhang, Weixiong,Zhang, Weixiong. 2014

[7]MeSAUR1, Encoded by a Small Auxin-Up RNA Gene, Acts as a Transcription Regulator to Positively Regulate ADP-Glucose Pyrophosphorylase Small Subunit1a Gene in Cassava. Ma, Ping'an,Liu, Chen,Meng, Yuhong,Ma, Ping'an,Chen, Xin,Liu, Chen,Meng, Yuhong,Xia, Zhiqiang,Zeng, Changying,Lu, Cheng,Wang, Wenquan,Ma, Ping'an,Chen, Xin,Liu, Chen,Meng, Yuhong,Xia, Zhiqiang,Zeng, Changying,Lu, Cheng,Wang, Wenquan. 2017

[8]Production of calcium gluconate from cassava by Penicillium citrinum SCG-112. Sun, Hai-Yan,Zhao, Pingjuan,Li, Juanhua,Liu, Enshi,Peng, Ming,Sun, Hai-Yan,Zhao, Pingjuan,Peng, Ming. 2011

[9]Quantitative Trait Locus Analysis for Yield Traits of Cassava (Manihot esculenta Crantz). Yan, Qingxiang,Li, Kaimian,Zhang, Xueqin,Ye, Jianqiu,Chen, Songbi,Li, Qing X.,Huang, Dongyi. 2014

[10]Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava. Wei, Yunxie,Shi, Haitao,Xia, Zhiqiang,Tie, Weiwei,Ding, Zehong,Yan, Yan,Wang, Wenquan,Hu, Wei,Li, Kaimian. 2016

[11]Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes. Hu, Wei,Xia, Zhiqiang,Yan, Yan,Ding, Zehong,Tie, Weiwei,Zou, Meiling,Wei, Yunxie,Lu, Cheng,Hou, Xiaowan,Wang, Wenquan,Peng, Ming,Wang, Lianzhe. 2015

[12]Cloning and Analysis of Vacuolar Invertase Gene (MeVINV2) Promoter from Cassava (Manihot Esculenta Crantz). Liu, Jiao,Hu, Yan-ping,Xia, Wen-rui,Yao, Yuan,Zhou, Yang,Fu, Shao-ping,Duan, Rui-jun,Li, Rui-mei,Guo, Jian-chun. 2014

[13]Isolation and Characterization of Ftsz Genes in Cassava. Geng, Meng-Ting,Yao, Yuan,Li, Rui-Mei,Fu, Shao-Ping,Duan, Rui-Jun,Liu, Jiao,Guo, Jian-Chun,Geng, Meng-Ting,Min, Yi,Chen, Xia,Fan, Jie,Yuan, Shuai,Wang, Lei,Zhang, Fan,Shang, Lu,Wang, Yun-Lin,Hu, Xin-Wen,Sun, Chong. 2017

[14]Change in physicochemical traits of cassava roots and starches associated with genotypes and environmental factors. Gu, Bi,Yao, Qingqun,Li, Kaimian,Chen, Songbi. 2013

[15]Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR. Hu, Meizhen,Wang, Wenquan,Hu, Meizhen,Xia, Zhiqiang,Zhou, Xincheng,Wang, Wenquan,Hu, Meizhen,Wang, Wenquan,Hu, Wenbin. 2016

[16]Environmental suitability of the red spider mite Tetranchus cinnabarinus (Acari: Tetranychidae) among cassava in China. Lu, Hui,Lu, Fuping,Xu, Xuelian,Chen, Qing. 2012

[17]Distribution and pathogen identification of cassava brown leaf spot in China. Pei, Y. L.,Shi, T.,Li, C. P.,Liu, X. B.,Cai, J. M.,Huang, G. X.. 2014

[18]Cloning and Sequence Analysis of Two cDNA Encoding invertase Inhibitors from Cassava (Manihot esculenta Crantz). Geng, Mengting,Yao, Yuan,Wu, Xiaohui,Fu, Shaoping,Guo, Jianchun. 2013

[19]The Effects of Calcium on The In Vitro Cassava Storage Root Formation. Yao, Yuan,Min, Yi,Geng, Mengting,Wu, Xiahui,Hu, Xinwen,Yao, Yuan,Min, Yi,Geng, Mengting,Wu, Xiahui,Fu, Shaoping,Guo, Jianchun,Yao, Yuan,Min, Yi,Geng, Mengting,Wu, Xiahui,Fu, Shaoping,Guo, Jianchun. 2013

[20]Endogenous small-noncoding RNAs and their roles in chilling response and stress acclimation in Cassava. Xia, Jing,Chen, Zheng,Zhang, Kevin,Zhou, Yufei,Song, Shun,Zhou, Junfei,Peng, Hai,Zhang, Weixiong,Zeng, Changying,Chen, Xin,Zhou, Yufei,Song, Shun,Lu, Cheng,Yang, Ruiju,Yang, Zi,Wang, Wenquan,Peng, Ming,Xia, Jing,Chen, Zheng,Zhang, Kevin,Zhang, Weixiong,Zhang, Weixiong. 2014

作者其他论文 更多>>