您好,欢迎访问北京市农林科学院 机构知识库!

The NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3.6

文献类型: 外文期刊

作者: Wang, Jinfang 1 ; Wang, Yanping 1 ; Zhang, Jie 1 ; Ren, Yi 1 ; Li, Maoying 1 ; Tian, Shaowei 1 ; Yu, Yongtao 1 ; Zuo, Yi; 1 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Key Lab Biol & Genet Improvement Hort Crops North, Beijing Key Lab Vegetable Germplasm Improvement, Natl Watermelon & Melon Improvement Ctr, Beijing 100097, Peoples R China

期刊名称:HORTICULTURE RESEARCH ( 影响因子:6.793; 五年影响因子:6.589 )

ISSN: 2662-6810

年卷期: 2021 年 8 卷 1 期

页码:

收录情况: SCI

摘要: NAC (NAM, ATAF1/2, and CUC2) transcription factors play important roles in fruit ripening and quality. The watermelon genome encodes 80 NAC genes, and 21 of these NAC genes are highly expressed in both the flesh and vascular tissues. Among these genes, ClNAC68 expression was significantly higher in flesh than in rind. However, the intrinsic regulatory mechanism of ClNAC68 in fruit ripening and quality is still unknown. In this study, we found that ClNAC68 is a transcriptional repressor and that the repression domain is located in the C-terminus. Knockout of ClNAC68 by the CRISPR-Cas9 system decreased the soluble solid content and sucrose accumulation in mutant flesh. Development was delayed, germination was inhibited, and the IAA content was significantly decreased in mutant seeds. Transcriptome analysis showed that the invertase gene ClINV was the only gene involved in sucrose metabolism that was upregulated in mutant flesh, and expression of the indole-3-acetic acid-amido synthetase gene ClGH3.6 in the IAA signaling pathway was also induced in mutant seeds. EMSA and dual-luciferase assays showed that ClNAC68 directly bound to the promoters of ClINV and ClGH3.6 to repress their expression. These results indicated that ClNAC68 positively regulated sugar and IAA accumulation by repressing ClINV and ClGH3.6. Our findings provide new insights into the regulatory mechanisms by which NAC transcription factors affect fruit quality and seed development.

  • 相关文献
作者其他论文 更多>>