文献类型: 外文期刊
作者: Chen, Kaiwen 1 ; Li, Tao 2 ; Yan, Tongjie 1 ; Xie, Feng 1 ; Feng, Qingchun 2 ; Zhu, Qingzhen 1 ; Zhao, Chunjiang 3 ;
作者机构: 1.Jiangsu Univ, Sch Agr Equipment Engn, Zhenjiang 212013, Jiangsu, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Intelligent Equipment Res Ctr, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
关键词: apple harvesting; soft gripper; Fin Ray effect; finite element analysis; constant-pressure feedback; slip detection
期刊名称:AGRICULTURE-BASEL ( 影响因子:3.408; 五年影响因子:3.459 )
ISSN:
年卷期: 2022 年 12 卷 11 期
页码:
收录情况: SCI
摘要: This research presents a soft gripper for apple harvesting to provide constant-pressure clamping and avoid fruit damage during slippage, to reduce the potential danger of damage to the apple pericarp during robotic harvesting. First, a three-finger gripper based on the Fin Ray structure is developed, and the influence of varied structure parameters during gripping is discussed accordingly. Second, we develop a mechanical model of the suggested servo-driven soft gripper based on the mappings of gripping force, pulling force, and servo torque. Third, a real-time control strategy for the servo is proposed, to monitor the relative position relationship between the gripper and the fruit by an ultrasonic sensor to avoid damage from the slip between the fruit and fingers. The experimental results show that the proposed soft gripper can non-destructively grasp and separate apples. In outdoor orchard experiments, the damage rate for the grasping experiments of the gripper with the force feedback system turned on was 0%; while the force feedback system was turned off, the damage rate was 20%, averaged for slight and severe damage. The three cases of rigid fingers and soft fingers with or without slip detection under the gripper structure of this study were tested by picking 25 apple samples for each set of experiments. The picking success rate for the rigid fingers was 100% but with a damage rate of 16%; the picking success rate for soft fingers with slip detection was 80%, with no fruit skin damage; in contrast, the picking success rate for soft fingers with slip detection off increased to 96%, and the damage rate was up to 8%. The experimental results demonstrated the effectiveness of the proposed control method.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Adaptive visual servoing control for uncalibrated robot manipulator with uncertain dead-zone constraint
作者:Ma, YA-Jun;Ma, YA-Jun;Zhao, Hui;Li, Tao
关键词:Adaptive control; robot manipulator; visual servoing; unknown dead-zone inputs; projecting algorithm
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding



