科研产出
微酸性电解水有效氯浓度对封闭式水培空心菜产量与品质的影响
《北方园艺 》 2015 北大核心
摘要:合理的营养液消毒技术是无土栽培蔬菜取得优质高产的保证。微酸性电解水作为高效、低残留的杀菌剂已应用到许多领域,其能否应用于无土栽培营养液消毒需要进一步验证。以台湾长叶空心菜为试材,研究了营养液不同浓度电解水有效氯对其产量和品质的影响,探索利用微酸性电解水进行水培营养液消毒的可行性。结果表明:在水培条件下,随着营养液中有效氯浓度的增加,空心菜的产量(鲜重、干重、株高、茎粗)和品质指标(可溶性糖含量、维生素C含量)均表现出先增大后减小趋势。总体而言,空心菜的产量指标对有效氯浓度反应比较敏感,使用微酸性电解水消毒后的营养液在回收利用前需要进行有效氯浓度检测,若有效氯浓度过高则可以通过搅拌扰动的方法促进其分解,将其控制在合理的范围内,以免其对空心菜的生长产生不利影响。
全文链接
请求原文
浅论宁夏农科院如何加强人才队伍"联动"建设
《中国科技成果 》 2015
摘要:当前,在科技体制深化改革时期,科技与经济“两张皮”的问题为一时热议。如何推动科技与经济紧密结合、增强科技创新对经济社会发展的支撑作用,社会各界高度关注。人才是事业发展的第一资源,本文以宁夏农科院改革后企、事业单位人才队伍建设为切入点,分析了改制后企业的总体发展状况、全院人才队伍两极分化的特点,重点查找了企业人才队伍中存的问题,提出了以“人才联动”促进“科企联动”的途径与措施。
全文链接
请求原文
噻虫嗪在酿酒葡萄果实和土壤中的残留动态和风险评估
《现代农药 》 2015
摘要:研究了噻虫嗪在葡萄果实和土壤中的消解动态、最终残留量以及膳食风险。试验结果表明:在添加水平为0.1~5.0 mg/kg时,添加回收率在89.6%~97.9%之间,相对标准偏差为1.35%~3.58%。噻虫嗪在葡萄中消解较快,半衰期为7.4 d;在土壤中的半衰期为10.0 d。在50 mg/kg和100mg/kg用量下,施药3~4次,噻虫嗪在葡萄果实中的最终残留量<0.2 mg/kg,其风险商值小于1。葡萄生产中使用噻虫嗪对人类产生的膳食风险小,可以接受。
全文链接
请求原文
生物炭对宁夏引黄灌区水稻产量及氮素利用率的影响
《植物营养与肥料学报 》 2015 北大核心 CSCD
摘要:【目的】氮是作物生长发育所需的主要营养元素,随着宁夏引黄灌区农业生产集约化程度不断提高,氮肥投入亦不断增加,由此导致的土壤板结及氮素利用率低等问题日益突显。鉴于生物炭在改良土壤及提高氮肥利用方面的潜在可行性,本文通过大田试验研究添加不同用量生物炭对水稻产量和氮素利用率的影响,为生物炭在该地区的应用提供参考和依据。【方法】以宁夏灌区具有代表性的集约化水稻田为研究对象,以宁粳43号水稻为试验材料,采用裂区试验设计,施氮量设常规施氮量(N 300,N 300 kg/hm2)和不施氮(N0)2个水平;生物炭设高量炭(C3,9000 kg/hm2)、中量炭(C2,6750 kg/hm2)、低量炭(C1,4500 kg/hm2)和不施炭(C0)4个水平。旨在明确添加生物炭对灌淤土基本理化性质、水稻产量及氮素利用率的影响。【结果】1)添加生物炭种植一季水稻后对灌淤土土壤含水量没有明显影响,土壤p H值亦没有发生明显变化。2)施加氮肥情况下,C3处理较C0处理可显著提高灌淤土全氮、全磷和速效钾含量,但对速效磷含量没有影响,C2和C3处理下土壤全氮、全磷、速效磷和速效钾都没有明显差异,但二者全氮和速效钾含量要显著高于C1处理;不施肥情况下,除C3和C2处理显著增加土壤速效钾含量外,其余处理对土壤养分含量没有影响。3)生物炭和氮肥配施可以显著增加水稻籽粒产量,并随生物炭用量(4500 9000 kg/hm2)增加而增高,增产率在15.26%44.89%之间,水稻籽粒产量与生物炭用量呈显著正相关关系(r=0.962),水稻株高和穗粒数也随生物炭用量增多而增加,同时,水稻地上部总吸氮量随生物炭用量增加而增加,C3处理较C0处理提高66.27 kg/hm2,各处理之间差异显著;不施氮肥情况下,添加生物炭(4500 9000kg/hm2)对水稻籽粒产量没有显著影响,对水稻产量构成因素的影响亦不明显,C1和C2处理可以显著提高水稻地上部总吸氮量,但C3处理对总吸氮量影响不明显,同时各施炭处理之间无显著差异。4)生物炭和氮肥配施时,氮肥农学效率和氮肥利用率均表现为随生物炭用量增加而增加,C3较C0处理氮肥农学效率提高10.87 kg/kg,氮肥利用率提高22.09个百分点。【结论】生物炭和氮肥配施可以提高宁夏引黄灌区水稻产量,本试验以施用9000kg/hm2(C3)的生物炭产量最高(增产率达44.89%),同时水稻株高和穗粒数也随生物炭用量增多而增加,生物炭和氮肥配施,氮肥农学效率和氮肥利用率随生物炭用量增加而增加;不施氮肥情况下,添加生物炭对水稻产量没有显著影响,对水稻产量构成因素的影响亦不明显。。
氮源类型与配比对柠条粉基质化发酵品质的影响
《农业机械学报 》 2015 EI 北大核心 CSCD
摘要:采用随机区组设计,以柠条粉为主要原料,干燥鸡粪、油饼和尿素为氮源,纤维素降解菌为接种外源微生物,进行了氮源类型及配比对柠条粉基质化发酵过程中发酵性能参数的影响试验。结果表明,氮源类型及配比对柠条粉基质化发酵堆体的腐熟速度和腐解产物产生显著的影响,以75%有机肥+25%化肥和50%有机肥+50%化肥处理的柠条粉堆体的升温速度快,高温持续时间较长(高于50℃,分别达到10 d和9 d,高于55℃,均达到6 d),积温较高,缩短了柠条粉腐熟的时间;至堆体结束后,总有机碳质量比分别为355.54 g/kg和359.86 g/kg,总氮质量比分别为22.36 g/kg和0.385 g/kg,硝态氮质量比分别为22.21 g/kg和0.337 g/kg,铵态氮质量比分别为0.049 g/kg和0.051 g/kg,碳氮比分别为14.69%和14.35%,纤维素和半纤维素降解率均在44%以上,木质素降解率在37%以上,腐殖酸质量分数分别达37.12%和37.08%,加速了柠条粉有机质的分解和纤维素的降解,提高了堆肥腐熟进程中的总氮和硝态氮含量,有效控制了氮素的损耗,保证了柠条粉腐熟后的肥力;腐熟后的各项理化指标均符合理想基质的要求,且基质的浸提液均不会对种子产生毒害作用。但考虑到保护作物根系生长、固定植株、同外界气体交换功能及持水保水能力等对基质的要求,认为氮源以75%有机肥+25%化肥和50%有机肥+50%化肥柠条粉腐熟的基质更适合蔬菜作物栽培。
全文链接
请求原文
ABA响应植物盐胁迫的机制研究进展
《中国农学通报 》 2015 CSCD
摘要:土壤盐渍化是迫使经济作物减产甚至严重限制农业生产的主要原因。作为主要的非生物胁迫因素,高盐可引起植物体内离子紊乱,最终导致植物产量降低,死亡率升高。ABA作为植物五大激素之一,是公认的抗性激素,在响应植物盐胁迫时起到积极作用。笔者就近年来ABA在响应植物盐胁迫时的相关性、作用机制及其信号转导途径进行综述,并对今后相关领域的研究予以展望。分析表明:ABA可响应植物盐胁迫,并在植物耐盐信号转导中发挥极为重要的作用,同时形成一系列适应性分子机制,使得植物通过自身响应机制抵抗高盐胁迫。
全文链接
请求原文
施磷对麦/玉/豆套作体系土壤磷素变化的影响
《中国生态农业学报 》 2015 北大核心 CSCD
摘要:小麦/玉米/大豆带状套作是四川省丘陵低山区主要旱地作物生产体系,了解该体系磷养分变化对优化磷肥管理和促进可持续生产有重要意义。本研究通过连续3年(2011—2013年)田间定位试验,设置P0、P1、P2、P3和P4共5个磷(P2O5)水平(玉米带分别为0 kg·hm-2、37.5 kg·hm-2、75 kg·hm-2、112.5 kg·hm-2、150 kg·hm-2,小麦-大豆带分别为0 kg·hm-2、45 kg·hm-2、90 kg·hm-2、135 kg·hm-2、180 kg·hm-2),探讨该体系中土壤全磷、速效磷、水溶性磷的变化规律和速效磷的年际变化。结果表明:在麦/玉/豆套作体系中施磷165 kg(P2O5)·hm-2(玉米带75 kg·hm-2,小麦-大豆带90 kg·hm-2),可以满足体系作物对磷的需求,基本达到磷的表观平衡,维持土壤速效磷含量在20 mg·kg-1左右。3年后5个磷水平下体系耕层土壤(0~20 cm)全磷变化量分别为-0.024 g·kg-1·a-1、-0.016 g·kg-1·a-1、0.016 g·kg-1·a-1、0.11 g·kg-1·a-1、0.15 g·kg-1·a-1,速效磷变化量依次为-1.2 mg·kg-1·a-1、-0.9 mg·kg-1·a-1、0.2 mg·kg-1·a-1、2.0 mg·kg-1·a-1和2.7 mg·kg-1·a-1。通过线性平台函数的模拟,该体系中玉米、小麦、大豆产量的土壤速效磷临界值分别为16.5 mg·kg-1、12.6 mg·kg-1和8.8 mg·kg-1。当土壤全磷含量低于0.55 g·kg-1时,土壤全磷每增加0.1 g·kg-1,土壤速效磷增加1.70 mg·kg-1;当土壤全磷大于0.55 g·kg-1,全磷每增加0.1 g·kg-1,土壤速效磷增加6.49 mg·kg-1。当土壤速效磷含量在40 mg·kg-1以下时,速效磷每增加1 mg·kg-1,水溶性磷增加0.017 mg·kg-1。综上,在麦/玉/豆体系磷肥管理中应该维持土壤全磷含量低于0.55 g·kg-1,同时速效磷含量在20 mg·kg-1左右,这样既可以保证作物产量和系统生产力又不会产生较大的环境威胁。
关键词: 磷肥 小麦/玉米/大豆带状套作 速效磷 水溶性磷 临界值
全文链接
请求原文


