基于迁移学习和金字塔卷积网络的河蟹个体图像识别方法研究

文献类型: 中文期刊

第一作者: 冯裕清

作者: 冯裕清;杨信廷;徐大明;罗娜;陈枫;孙传恒

作者机构:

关键词: 河蟹追溯;图像识别;金字塔卷积;深度学习;迁移学习

期刊名称: 渔业现代化

ISSN: 1007-9580

年卷期: 2022 年 001 期

页码: 52-60,71

收录情况: 北大核心 ; CSCD

摘要: 针对目前河蟹追溯成本高、消费者无法细粒度地追溯单体河蟹信息等问题,提出一种基于迁移学习和金字塔卷积的河蟹背甲图像个体识别算法。该算法使用金字塔卷积层替换普通残差卷积块构建网络模型,可以从蟹背图像中提取多尺度、深层次的特征信息。结果显示:采用金字塔卷积结构的Resnet34和Resnet50的准确率分别为98.38%、98.51%,与使用普通卷积层的模型相比,准确率提升5.49%、1.3%,而当模型深度达到101层时,模型性能不再明显提升。与使用金字塔卷积结构的全新学习模型相比,迁移学习方法的训练收敛迭代轮次从20轮降低至5轮,此时模型准确率为98.88%,较全新学习的准确率提升0.37%,同时弥补了样本量较少的问题。该研究为河蟹个体识别追溯提供了理论依据和技术支持。

分类号: S966.16%TP391.41

  • 相关文献

[1]基于深度学习与特征可视化方法的草地贪夜蛾及其近缘种成虫识别. 魏靖,王玉亭,袁会珠,张梦蕾,王振营. 2020

[2]基于迁移学习的多模型水稻病害识别方法研究. 王忠培,张萌,董伟,朱静波,孔娟娟,钱蓉. 2021

[3]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

[4]基于YOLOv3深度卷积神经网络的田间百香果定位. 林营志,卢依琳,刘现. 2019

[5]基于性诱和深度学习的草地贪夜蛾成虫自动识别计数方法. 邱荣洲,赵健,何玉仙,陈韶萍,黄美玲,池美香,梁勇,翁启勇. 2021

[6]基于Faster R-CNN的美国白蛾图像识别模型研究. 薛大暄,张瑞瑞,陈立平,陈梅香,徐刚. 2020

[7]卷积神经网络在农业病虫害识别中的应用. 张耀丽,许宁,宋裕民,孟庆山,侯旭,李虎. 2023

[8]采用组合增强的YOLOX-ViT协同识别温室内番茄花果. 吕志远,张付杰,魏晓明,黄媛,李晶晶,张钟莉莉. 2023

[9]基于图像处理和Deeplabv3+模型的小麦赤霉病识别. 戴雨舒,仲晓春,孙成明,杨俊,刘涛,刘升平. 2021

[10]农业害虫自动识别与监测技术. 封洪强,姚青. 2018

[11]基于分层卷积神经网络的牧草种子识别模型. 王欣宇,马玉宝,潘新,闫伟红. 2021

[12]基于RGB图像和CNN模型的水稻氮素诊断系统. 吕斌,姚强,粟超,李波,查茜,黄祥,詹火木. 2024

[13]基于AI的桃树病害智能识别方法研究与应用. 吴建伟,黄杰,熊晓菲,高晗,秦向阳. 2022

[14]基于改进Res Net50模型的大宗淡水鱼种类识别方法. 万鹏,赵竣威,朱明,谭鹤群,邓志勇,黄毓毅,吴文锦,丁安子. 2021

[15]农作物害虫图像识别研究进展与展望. 张萌,钱蓉,朱静波,张立平,李闰枚,董伟. 2018

[16]基于群体图像识别的生菜鲜重估算方法研究. 徐丹,李硕果,陈晶晶,崔庭源,张义,马浚诚. 2024

[17]稀疏分层概率自组织图实例迁移学习方法. 吴蕾,田儒雅,张学福. 2016

[18]基于机器学习和无人机图像的棉花密度识别研究. 张静,王清茹,雷亚平,王占彪,韩迎春,李小飞,邢芳芳,范正义,李亚兵,冯璐. 2021

[19]机器视觉结合深度学习对荔枝估产的算法研究. 高翔,陈福展,董力中,卢嘉威,李媛媛,凡超,陈万云. 2024

[20]基于深度残差网络的小样本杯沿缺陷检测. 金宇霏,陆慧娟,郭鑫璐,张俊,朱文杰. 2021

作者其他论文 更多>>