扫描成像光谱仪和地物光谱仪在单叶尺度上的对比研究

文献类型: 中文期刊

第一作者: 张东彦

作者: 张东彦;宋晓宇;马智宏;杨贵军;黄文江;王纪华

作者机构:

关键词: 扫描成像光谱仪;高光谱;植被指数;冬小麦

期刊名称: 中国农业科学

ISSN: 0578-1752

年卷期: 2010 年 43 卷 11 期

页码: 2239-2245

收录情况: 北大核心 ; CSCD

摘要: 【目的】对图谱合一的冬小麦叶片高光谱数据进行分析,验证扫描成像光谱仪(PIS)在近地使用的可行性。【方法】利用扫描成像光谱仪和地物光谱仪(ASD)获取冬小麦关键生育期的叶片光谱信息,比较两仪器在450—850nm获得的光谱曲线;选取15种植被指数,对两仪器获得的光谱值进行植被指数运算,并将结果与叶片叶绿素含量进行相关分析。【结果】在冬小麦的不同生育期,扫描成像光谱仪和地物光谱仪获得叶片的反射率曲线趋势一致,在对应的波段均表现出相应的波峰、波谷、高反射区等特征,但扫描成像光谱仪获得的反射率值都高于地物光谱仪。对比两仪器15种植被指数和叶绿素含量之间的相关系数得出,扫描成像光谱仪获得的相关系数普遍高于地物光谱仪。【结论】扫描成像光谱仪和地物光谱仪获取的数据有相同的曲线特征,说明扫描成像光谱仪获得的数据是可靠的;植被指数与叶绿素含量的相关系数比较结果表明,扫描成像光谱仪获得的图谱合一的数据在近地遥感研究中有很大的优势。

分类号: S127

  • 相关文献

[1]基于面积指数的植株氮含量遥感估算. 杨福芹,冯海宽,谢瑞,韩佩佩,戴渝心,蔡国盛,金丽妍. 2020

[2]冬小麦白粉病冠层光谱特征解析与病情指数反演. 范友波,顾晓鹤,王双亭,杨贵军,王磊,王立志,陈召霞. 2017

[3]基于无人机高光谱遥感数据的冬小麦生物量估算. 陶惠林,冯海宽,徐良骥,杨贵军,杨小冬,苗梦珂,刘明星. 2020

[4]基于无人机高光谱遥感的冬小麦株高和叶面积指数估算. 陶惠林,徐良骥,冯海宽,杨贵军,代阳,牛亚超. 2020

[5]融合多因子的无人机高光谱遥感冬小麦产量估算. 谢瑞,杨福芹,冯海宽,李天驰. 2023

[6]用神经网络和高光谱植被指数估算小麦生物量. 王大成,王纪华,靳宁,王芊,李存军,黄敬峰,王渊,黄芳. 2008

[7]基于高光谱影像的高寒牧区土地覆盖分类与草地生物量监测模型. 方金,梁天刚,吕志邦,冯琦胜,何咏琪. 2013

[8]基于高光谱数据的滴灌甜菜叶片全氮含量估算. 李宗飞,苏继霞,费聪,李阳阳,刘宁宁,戴宇祥,张开祥,王开勇,樊华,陈兵. 2020

[9]基于植被指数的叶绿素密度遥感反演建模与适用性研究. 张苏,刘良云,黄文江. 2013

[10]基于连续小波变换的冬小麦叶片最大净光合速率遥感估算. 苗梦珂,王宝山,李长春,龙慧灵,杨贵军,冯海宽,翟丽婷,刘明星,吴智超. 2020

[11]基于无人机高光谱数据的甘蔗糖分估算模型研究. 陈燕丽,黄璐,杨邵锷,孙明,丁美花,黄立宁,马瑞升,梁驰,杨鑫,陈诚. 2024

[12]基于高光谱植被指数的棉花干物质积累估算模型研究. 黄春燕,王登伟,陈冠文,袁杰,祁亚琴,陈燕,程诚. 2006

[13]不同抗感水稻品种对褐飞虱胁迫的高光谱响应特征. 杨奇欣,赖凤香,何佳春,魏琪,王渭霞,万品俊,傅强. 2024

[14]不同施氮水平下棉花叶片最大羧化速率的高光谱估测. 张鑫磊,刘连涛,孙红春,张科,白志英,董合忠,李存东,张永江. 2020

[15]基于高光谱和HJ-1 CCD的水旱地冬小麦叶绿素含量反演. 王慧琴,冯美臣,李广信,杨武德,任鹏,刘婷婷,郭小丽,高龙梅,李志花. 2014

[16]基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演. 李鑫川,徐新刚,鲍艳松,黄文江,罗菊花,董莹莹,宋晓宇,王纪华. 2012

[17]基于高光谱响应与模拟模型的冬小麦变量追氮研究. 蒋阿宁,黄文江,王纪华,刘克礼,赵春江,刘良云. 2007

[18]基于生长度日的冬小麦植株氮浓度监测. 赵钰,李振海,杨贵军,王建雯,段丹丹,杨武德,冯美臣. 2019

[19]基于无人机高光谱和数码影像数据的冬小麦生物量反演. 李天驰,冯海宽,朱贝贝,范园园,金丽妍,成倩,李倩雨. 2020

[20]基于高光谱维数约简与植被指数估算冬小麦叶面积指数的比较. 付元元,杨贵军,冯海宽,徐新刚,宋晓宇,王纪华. 2012

作者其他论文 更多>>