复杂场景下害虫目标检测算法:YOLOv8-Extend

文献类型: 中文期刊

第一作者: 张荣华

作者: 张荣华;白雪;樊江川

作者机构:

关键词: YOLOv8;害虫检测;注意力机制;边缘计算;CBAM;BiFPN;VoVGSCSP;GSConv

期刊名称: 智慧农业(中英文)

ISSN: 2096-8094

年卷期: 2024 年 6 卷 002 期

页码: 49-61

收录情况: CSCD

摘要: [目的/意义]实现复杂的自然环境下农作物害虫的识别检测,改变当前农业生产过程中依赖于专家人工感官识别判定的现状,提升害虫检测效率和准确率具有重要意义.针对农作物害虫目标检测具有目标小、与农作物拟态、检测准确率低、算法推理速度慢等问题,本研究提出一种基于改进YOLOv8的复杂场景下农作物害虫目标检测算法.[方法]首先通过引入GSConv提高模型的感受野,部分Conv更换为轻量化的幻影卷积(Ghost Convo-lution),采用HorBlock捕捉更长期的特征依赖关系,Concat更换为BiFPN(Bi-directional Feature Pyramid Network)更加丰富的特征融合,使用VoVGSCSP模块提升微小目标检测,同时引入CBAM(Convolutional Block Attention Module)注意力机制来强化田间虫害目标特征.然后使用Wise-IoU损失函数更多地关注普通质量样本,提高网络模型的泛化能力和整体性能.之后,对改进后的YOLOv8-Extend模型与YOLOv8原模型、YOLOv5、YOLOv8-GSCONV、YOLOv8-BiFPN、YOLOv8-CBAM进行对比,验证模型检测准确度和精度.最后将模型移植到边缘设备进行推理验证,在实际应用场景中验证模型的有效性.[结果和讨论]YOLOv8-Extend在对比实验中均取得良好的表现,其中与原模型对比实验中,精确率、召回率、mAP@0.5和mAP@0.5∶0.95评价指标分别提升2.6%、3.6%、2.4%和7.2%,表现突出,具有更好的检测效果.改进前后的模型分别运行在边缘计算设备JETSON ORIN NX 16 GB上并通过TensorRT加速相比,mAP@0.5提升4.6%,达到57.6 FPS,满足实时性检测要求.在复杂农业场景中YOLOv8-Extend模型具有更好的适应性,在实际采集数据中微小害虫与生长环境相似的害虫检测方面有明显优势,在困难数据检测方面准确率提高了11.9%.[结论]本研究提出的YOLOv8改进模型有效提高了检测精度和识别率同时保持了较高的运行效率,能够部署在边缘终端计算设备上实现农作物害虫的实时检测,也为其他小目标智能检测和模型结构优化提供参考和帮助.

分类号: S433%TP391.41

  • 相关文献

[1]基于改进YOLOv8卷积神经网络的蟹味菇检测方法. 林宗缪,马超,胡冬. 2024

[2]改进YOLOv5测量田间小麦单位面积穗数. 黄硕,周亚男,王起帆,张晗,邱朝阳,康凯,罗斌. 2022

[3]农业害虫检测的深度学习算法综述. 蒋心璐,陈天恩,王聪,李书琴,张宏鸣,赵春江. 2023

[4]机器视觉结合深度学习对荔枝估产的算法研究. 高翔,陈福展,董力中,卢嘉威,李媛媛,凡超,陈万云. 2024

[5]基于区块链和边缘计算的水稻原产地溯源方法研究. 孙传恒,袁晟,罗娜,徐大明,杨信廷. 2023

[6]大田环境下的农业害虫图像小目标检测算法. 蒋心璐,陈天恩,王聪,赵春江. 2024

[7]基于YOLOv5改进模型的水稻害虫检测算法研究. 杨凯航,朱铮涛,罗雄炜,陈树雄,李益威,张彬. 2023

[8]基于边缘计算的温室传感器故障自识别系统设计与实现. 肖雪朋,王明飞,张馨,王利春,魏晓明,郑文刚. 2024

[9]基于改进实例分割算法的区域养殖生猪计数系统. 张岩琪,周硕,张凝,柴秀娟,孙坦. 2024

[10]基于改进YOLOv8的自然环境下柑橘果实识别. 余圣新,韦莹莹,方辉,李敏,柴秀娟,曾志康,覃泽林. 2024

[11]基于改进YOLOv8卷积神经网络的稻田苗期杂草检测方法. 林宗缪,马超,胡冬. 2024

[12]改进YOLOv4的温室环境下草莓生育期识别方法. 龙洁花,郭文忠,林森,文朝武,张宇,赵春江. 2021

[13]基于YOLOX改进模型的茶叶嫩芽识别方法. 俞龙,黄楚斌,唐劲驰,黄浩宜,周运峰,黄永权,孙佳琪. 2022

[14]融合注意力机制的开集猪脸识别方法. 王荣,高荣华,李奇峰,刘上豪,于沁杨,冯璐. 2023

[15]基于双线性注意力网络的农业灯诱害虫细粒度图像识别研究. 姚青,姚波,吕军,唐健,冯晋,朱旭华. 2021

[16]基于改进YOLO v5的复杂环境下桑树枝干识别定位方法. 李丽,卢世博,任浩,徐刚,周永忠. 2024

[17]改进YOLOv5在胡瓜钝绥螨品质管控系统中的设计与应用. 李建兴,刘振宇,马莹,张艳璇,宋江,纪茂源,旷树森. 2023

[18]基于多维间注意力机制的水稻病害识别模型. 王忠培,谢成军,董伟,管博伦. 2024

[19]基于Attention_DenseCNN的水稻问答系统问句分类. 王郝日钦,吴华瑞,冯帅,刘志超,许童羽. 2021

[20]基于改进YOLOv5s的硬核期葡萄簇检测. 冯晓,张辉,刘运超,张微,李小红,马中杰. 2024

作者其他论文 更多>>