基于CNN和Transformer的绿豆干旱胁迫识别模型

文献类型: 中文期刊

第一作者: 蒋东山

作者: 蒋东山;刘金洋;张浩淼;李士丛;罗仔秋;余骥远;李洁;陈新;袁星星;高尚兵

作者机构: 淮阴工学院计算机与软件工程学院;江苏省农业科学院经济作物研究所

关键词: 绿豆;干旱胁迫;卷积神经网络;转换器;图像识别;叶绿素荧光图像

期刊名称: 江苏农业学报

ISSN: 1000-4440

年卷期: 2025 年 41 卷 001 期

页码: 87-100

收录情况: 北大核心 ; CSCD

摘要: 为了解决传统绿豆干旱胁迫识别方法存在识别率低、时效性差的问题,本研究建立了基于卷积神经网络(CNN)和转换器(Transformer)的绿豆干旱胁迫识别模型Mungbean-droughtNet。该模型采用双分支结构,利用全局特征提取模块(GFEM)分支和局部特征提取模块(LFEM)分支分别从输入图像提取局部特征和全局特征。最后利用多层感知器(MLP)模块将局部特征和全局特征进行融合,实现分类。在实际数据分析中,共采集14 536张干旱胁迫下的绿豆叶绿素荧光图像,分为HR、R、MR、S、HS和对照6类。利用Mungbean-droughtNet模型对叶绿素荧光图像数据集进行分析,结果表明,Mungbean-droughtNet模型对测试集中叶绿素荧光图像的平均识别准确率为95.57%,平均精度为98.18%,平均召回率为98.40%,平均F1分数为98.28%。和目前先进模型EfficientNetV2和Swin Transformer相比,Mungbean-droughtNet模型准确率分别提高了3.56个百分点和2.62个百分点,表现出更强的鲁棒性和更好的识别效果。本研究结果为绿豆干旱胁迫研究和耐旱基因挖掘提供了基础。

分类号: S522%TP183%TP391.41

  • 相关文献

[1]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

[2]卷积神经网络在农业病虫害识别中的应用. 张耀丽,许宁,宋裕民,孟庆山,侯旭,李虎. 2023

[3]基于多列空洞卷积神经网络的麦穗计数方法研究. 刘云玲,张品戈,王千航,周睿琪,赵佳,肖永贵,马韫韬. 2021

[4]基于注意力机制及多尺度特征融合的番茄叶片缺素图像分类方法. 韩旭,赵春江,吴华瑞,朱华吉,张燕. 2021

[5]基于分层卷积神经网络的牧草种子识别模型. 王欣宇,马玉宝,潘新,闫伟红. 2021

[6]基于卷积神经网络的入侵昆虫识别研究. 黄亦其,鹿林飞,沈豪,王福宽,乔曦. 2024

[7]基于改进VGG卷积神经网络的棉花病害识别模型. 张建华,孔繁涛,吴建寨,翟治芬,韩书庆,曹姗姗. 2018

[8]基于卷积神经网络和小样本的茶树病害图像识别. 孙云云,江朝晖,董伟,张立平,饶元,李绍稳. 2019

[9]绿豆全生育期抗旱性鉴定及形态指标研究. 赵雪英,张泽燕,朱慧珺,闫虎斌,张春明. 2017

[10]干旱胁迫对绿豆农艺性状及产量的影响研究. 李静,徐其江. 2017

[11]基于PMMS-Net和叶绿素荧光成像的绿豆叶斑病抗性鉴定方法. 李洁,高尚兵,余骥远,陈新,李士丛,袁星星. 2024

[12]田间害虫图像识别中的特征提取与分类器设计研究. 张红涛,胡玉霞,赵明茜,邱道尹,张孝远,张恒源. 2008

[13]基于DRGB的运动中肉牛形体部位识别. 邓寒冰,许童羽,周云成,苗腾,张聿博,徐静,金莉,陈春玲. 2018

[14]基于图像纹理特征的养殖鱼群摄食活动强度评估. 陈彩文,杜永贵,周超,孙传恒. 2017

[15]不同自然场景下葡萄果实识别方法研究. 马本学,贾艳婷,梅卫江,高国刚,吕琛. 2015

[16]高光谱成像技术和主成分分析识别玉米籽粒的胚(英文). 黄文倩,李江波,张驰,张保华,张百海. 2012

[17]红外传感器与机器视觉融合的果树害虫识别及计数方法. 田冉,陈梅香,董大明,李文勇,矫雷子,王以忠,李明,孙传恒,杨信廷. 2016

[18]图像识别技术在农业领域中的应用. 林羽,刘斌琼. 2020

[19]基于迁移学习和金字塔卷积网络的河蟹个体图像识别方法研究. 冯裕清,杨信廷,徐大明,罗娜,陈枫,孙传恒. 2022

[20]基于YOLOv3深度卷积神经网络的田间百香果定位. 林营志,卢依琳,刘现. 2019

作者其他论文 更多>>