面向植物病害识别的卷积神经网络精简结构Distilled-MobileNet模型

文献类型: 中文期刊

第一作者: 邱文杰

作者: 邱文杰;叶进;胡亮青;杨娟;李其利;莫贱友;易万茂

作者机构:

关键词: 病害识别;深度学习;模型压缩;知识蒸馏;卷积神经网络

期刊名称: 智慧农业(中英文)

ISSN: 2096-8094

年卷期: 2021 年 01 期

页码: 109-117

摘要: 卷积神经网络(CNN)的发展带来了大量的网络参数和庞大的模型体积,极大地限制了其在小规模计算资源设备上的应用。为将CNN应用在各种小型设备上,研究了一种基于知识蒸馏的结构化模型压缩方法。该方法首先利用VGG16训练了一个识别率较高的教师模型,再将该模型中的知识通过蒸馏的方法迁移到MobileNet,从而大幅减少了模型的参数量。将知识蒸馏后的Distilled-MobileNet模型应用在14种作物的38种常见病害分类中。进行了知识蒸馏在VGG16、AlexNet、GoogleNet和ResNet 4种不同网络结构上的表现测试,结果表明,当VGG16作为教师模型时,模型准确率提升了97.54%;使用单个病害识别率、平均准确率、模型内存、平均识别时间4个指标对训练好的Distilled-MobileNet模型进行真实环境下准确性评估,经测试,模型的平均准确率达到了97.62%,平均识别时间缩短至0.218 s,仅占VGG16模型的13.20%,模型大小压缩仅为19.83 MB,相比于VGG16缩小了93.60%,使其具备了较高的准确性和实时性要求。本方法模型在压缩内存体积和缩短识别时间上较传统神经网络有了明显提高,为内存和计算资源受限设备上的病害识别提供了新的思路。

分类号: S432`TP183`TP391.41

  • 相关文献

[1]基于卷积神经网络的家蚕病害识别研究. 石洪康,肖文福,黄亮,胡丛武,胡光荣,张剑飞. 2022

[2]一种马铃薯病害神经网络识别方法. 刘飞,董伟,高海涛. 2022

[3]一种基于深度学习的玉米病害识别方法. 郑铖,董伟,高海涛. 2023

[4]基于机器视觉的农作物病害识别研究进展. 麻剑钧,刘晓慈,金龙新,熊伟,易森林,封春芳,刘阳,夏先亮. 2023

[5]设施温室影像采集与环境监测机器人系统设计及应用. 郭威,吴华瑞,朱华吉. 2020

[6]深度学习方法在农业领域的研究及应用. 马聪,张建华,陈学东,朱丹. 2020

[7]基于深度卷积神经网络的红树林物种无人机监测研究. 黄亦其,刘琪,赵建晔,黄文善,孙中宇,乔曦. 2020

[8]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

[9]卷积神经网络在农业病虫害识别中的应用. 张耀丽,许宁,宋裕民,孟庆山,侯旭,李虎. 2023

[10]基于ResNet深度残差网络的白喉乌头检测. 梁俊欢,董峦,阿斯娅·曼力克,孙宗玖,魏鹏,马海燕,艾尼玩·艾买尔,阿仁,郑逢令. 2023

[11]一种基于深度学习的水稻种子分类方法. 王晓飞,刘维,巫浩翔,陈浩,张丽婷,潘朝阳,何秀英. 2024

[12]基于深度学习模型的种植结构复杂区农作物精细分类研究. 田甜,王迪,王珍,李会宾. 2022

[13]一种边缘辅助的卫星影像云修复卷积神经网络. 张雨姝,戴佩玉. 2024

[14]基于Faster R-CNN网络的茶叶嫩芽检测. 朱红春,李旭,孟炀,杨海滨,徐泽,李振海. 2022

[15]基于卷积神经网络的家蚕幼虫品种智能识别研究. 石洪康,田涯涯,杨创,陈宇,粟思源,张智勇,张剑飞,蒋猛. 2020

[16]基于3-2D融和模型的毛虾捕捞渔船行为识别. 张佳泽,张胜茂,王书献,杨昱皞,戴阳,熊瑛. 2022

[17]基于卷积神经网络的水稻虫害识别. 梁万杰,曹宏鑫. 2017

[18]基于分层卷积神经网络的牧草种子识别模型. 王欣宇,马玉宝,潘新,闫伟红. 2021

[19]基于深度学习的杂草识别方法研究进展. 付豪,赵学观,翟长远,郑康,郑申玉,王秀. 2023

[20]常态养殖下妊娠母猪体质量智能测定模型. 肖德琴,刘俊彬,刘又夫,黄一桂,谭祖杰,熊本海. 2022

作者其他论文 更多>>