深度学习在蜜蜂研究中的应用

文献类型: 中文期刊

第一作者: 孙逸飞

作者: 孙逸飞;丁桂玲;路运才;刘振虎;黄家兴

作者机构:

关键词: 深度学习;目标检测;行为跟踪;蜂群健康;蜂巢监测

期刊名称: 环境昆虫学报

ISSN:

年卷期: 2023 年 005 期

页码: 1150-1160

收录情况: 北大核心 ; CSCD

摘要: 实现对蜜蜂蜂群的实时动态监测,有助于养蜂业的数字化与智能化发展,对大幅提升养蜂管理水平具有重要意义。深度学习作为人工智能的一种新的研究方向,目前已被广泛应用于昆虫分类学、行为学、害虫生物防治等领域。随着深度学习检测算法的迅速发展,基于深度学习的蜜蜂蜂群监测技术不断涌现,为智能化养蜂提供了可能。为促进深度学习在蜜蜂领域的进一步应用,本文梳理了深度学习在蜜蜂的物种识别、行为跟踪监测、蜂群健康监测和蜂巢监测等方面的研究进展,分析了深度学习技术在蜜蜂蜂群监测研究及应用中存在的一些问题和未来发展方向,为深度学习在蜜蜂领域的应用提出了建议。

分类号: TP18%S891

  • 相关文献

[1]基于机器视觉和深度学习的稻纵卷叶螟性诱智能监测系统. 张哲宇,孙果镓,杨保军,刘淑华,吕军,姚青,唐健. 2022

[2]农业害虫检测的深度学习算法综述. 蒋心璐,陈天恩,王聪,李书琴,张宏鸣,赵春江. 2023

[3]基于深度学习的蚕茧种类识别研究. 石洪康,李林波,祝明辉,陈义安,马勇,张剑飞. 2023

[4]基于AlexNet的栽培苜蓿病害识别. 李云昊,李仲贤,伏帅,张忠雪,茆士琴,冯琦胜,梁天刚,李彦忠. 2023

[5]基于YOLOv4的稻田杂草目标检测算法. 袁涛,胡冬,马超,李琳一,郑秀国,钱戴玲. 2023

[6]基于深度学习的杂草识别方法研究进展. 付豪,赵学观,翟长远,郑康,郑申玉,王秀. 2023

[7]基于改进YOLOv5s的日光温室黄瓜霜霉病孢子囊检测计数方法. 李明,丁智欢,赵靖暄,陈思铭,李文勇,杨信廷. 2023

[8]基于YOLOv5s-SE和通道剪枝的虫咬紫金蝉茶检测方法研究. 戴佳兵,宋春芳,凌彩金,李臻锋,孙崇高. 2024

[9]基于YOLOv3模型的金枪鱼鱼群特征识别初步研究. 马硕,张禹,王鲁民,张勋,金卫国,王国来,常卫东. 2021

[10]大田环境下的农业害虫图像小目标检测算法. 蒋心璐,陈天恩,王聪,赵春江. 2024

[11]基于深度学习的半监督图像标注系统设计与实现. 胡明玉,夏雪,杨晨雪,曹景军,柴秀娟. 2021

[12]面向海洋渔业捕捞生产的深度学习方法应用研究进展. 张胜茂,孙永文,樊伟,唐峰华,崔雪森,伍玉梅. 2022

[13]水族馆鱼类目标检测网络优化研究. 刘洋,张胜茂,王书献,王斐,樊伟,邹国华,伯静. 2022

[14]基于坐标注意力机制与高效边界框回归损失的线虫快速识别. 陆健强,梁效,余超然,兰玉彬,邱洪斌,黄捷伟,尹梓濠,陈慧洁,郑胜杰. 2022

[15]基于改进YOLO-V4网络的浅海生物检测模型. 毛国君,翁伟栋,朱晋德,张媛,吴富村,毛玉泽. 2021

[16]基于实例分割的柑橘花朵识别及花量统计. 邓颖,吴华瑞,朱华吉. 2020

[17]基于区域亮度自适应校正的茶叶嫩芽检测模型. 吕军,方梦瑞,姚青,武传宇,贺盈磊,边磊,钟小玉. 2021

[18]改进YOLOv4的温室环境下草莓生育期识别方法. 龙洁花,郭文忠,林森,文朝武,张宇,赵春江. 2021

[19]基于改进YOLO v5的复杂环境下桑树枝干识别定位方法. 李丽,卢世博,任浩,徐刚,周永忠. 2024

[20]基于改进YOLOv5s的硬核期葡萄簇检测. 冯晓,张辉,刘运超,张微,李小红,马中杰. 2024

作者其他论文 更多>>