基于改进YOLO v8的轻量化稻瘟病孢子检测方法

文献类型: 中文期刊

第一作者: 罗斌

作者: 罗斌;李家超;周亚男;潘大宇;黄硕

作者机构:

关键词: 稻瘟病孢子;目标检测;YOLO v8;轻量化;注意力机制

期刊名称: 农业机械学报

ISSN: 1000-1298

年卷期: 2024 年 55 卷 011 期

页码: 32-38

收录情况: EI ; 北大核心 ; CSCD

摘要: 稻瘟病由稻瘟病孢子通过空气进行传播,严重影响水稻产量,因此,稻瘟病孢子的检测对于稻瘟病早期诊断与防治具有重要作用.针对现有方法存在检测速度慢的问题,本研究基于YOLO v8模型提出了一种稻瘟病孢子检测方法RBS-YOLO.首先,该算法在主干网络中引入PP-LCNet轻量化网络结构,减少模型每秒浮点运算次数并降低模型内存占用量,其次在颈部网络中引入高效多尺度注意力模块(Efficient multi-scale attention module,EMA),并将原损失函数改进为WIOU损失函数,提高了模型识别稻瘟病孢子的精确率与平均精度均值.改进后的RBS-YOLO模型精确率与平均精度均值分别为97.3%和98.7%,满足稻瘟病孢子的检测需求,模型内存占用量与每秒浮点运算次数分别为3.46 MB、5.2 × 109,同YOLO v8n相比分别降低41.8%与35.8%.RBS-YOLO模型与当前主流的YOLO v5s、YOLO v7、YOLO v8n模型对比,每秒浮点运算次数分别降低67.3%、95.1%、35.8%.研究结果表明RBS-YOLO模型能够满足稻瘟病孢子实时检测的需求,且有利干部署到移动端.

分类号: TP391.41

  • 相关文献

[1]基于改进YOLOv4算法的番茄叶部病害识别方法. 储鑫,李祥,罗斌,王晓冬,黄硕. 2023

[2]融合注意力机制的荔枝轻量化检测方法研究. 王聪,文晟,兰玉彬,严倩,姜永华,张建桃,罗菊川. 2025

[3]基于RT-WEDT的麦穗检测与计数方法. 李婕,杨子豪,郑权,乔江伟,涂静敏. 2024

[4]改进YOLOv4的温室环境下草莓生育期识别方法. 龙洁花,郭文忠,林森,文朝武,张宇,赵春江. 2021

[5]基于改进YOLO v5的复杂环境下桑树枝干识别定位方法. 李丽,卢世博,任浩,徐刚,周永忠. 2024

[6]基于改进YOLOv5s的硬核期葡萄簇检测. 冯晓,张辉,刘运超,张微,李小红,马中杰. 2024

[7]基于YOLOv5s-SE和通道剪枝的虫咬紫金蝉茶检测方法研究. 戴佳兵,宋春芳,凌彩金,李臻锋,孙崇高. 2024

[8]基于YOLOv5改进模型的丁香鱼围网作业目标检测研究. 张佳泽,张胜茂,樊伟,唐峰华,杨胜龙,孙永文,王书献,刘洋,朱文斌. 2023

[9]基于坐标注意力机制与高效边界框回归损失的线虫快速识别. 陆健强,梁效,余超然,兰玉彬,邱洪斌,黄捷伟,尹梓濠,陈慧洁,郑胜杰. 2022

[10]基于改进YOLOv5n模型的农作物病虫害识别方法. 承达瑜,赵伟,何伟德,武择鹏,王建东. 2024

[11]一种剑麻装载机的轻量化设计与应用. 陈涛,金刚,覃旭,黄显雅,彭欣怡,刘明,吴密,周肇峰. 2021

[12]基于轻量化卷积神经网络的改进模型与验证. 李润龙,王运圣,徐识溥,刘勇. 2020

[13]改进Multi-scale ResNet的蔬菜叶部病害识别. 王春山,周冀,吴华瑞,滕桂法,赵春江,李久熙. 2020

[14]喷雾机喷杆结构的研究现状及展望. 乔白羽,丁素明,薛新宇,崔龙飞,周晴晴,张亚萍. 2017

[15]基于LW-YOLOv3模型的棉花主茎生长点检测与定位研究. 孙想,吴华瑞,朱华吉,杨雨森,陈诚,何思琪,王春山. 2021

[16]电驱自走式农机测试平台的设计. 余涛,刘俊杰,杨存志,叶岩,孙先明,李国林. 2021

[17]轻型拖车车架设计和静动力学仿真研究. 石凯飞. 2022

[18]基于RDN-YOLO的自然环境下水稻病害识别模型研究. 廖娟,刘凯旋,杨玉青,严从宽,张爱芳,朱德泉. 2024

[19]基于改进YOLO v5s的轻量化植物识别模型研究. 马宏兴,董凯兵,王英菲,魏淑花,黄文广,苟建平. 2023

[20]基于 YOLOV5-MobilenetV3和声呐图像的鱼类识别轻量化模型. 罗毅智,陆华忠,周星星,袁余,齐海军,李斌,刘志昌. 2023

作者其他论文 更多>>