基于深度学习的农业科技政策知识抽取方法研究

文献类型: 中文期刊

第一作者: 赵小丹

作者: 赵小丹;胡林

作者机构:

关键词: 农业科技政策;BERT-BiLSTM-CRF;知识抽取;实体识别

期刊名称: 数据与计算发展前沿

ISSN: 2096-742X

年卷期: 2024 年 004 期

页码: 106-115

收录情况: CSCD

摘要: 【应用背景】农业科技政策对科技进步和农业生产发展具有重要影响,不同政府部门发布的政策具有针对概念实体的关联性。【目的】针对农业科技政策命名实体识别及关系抽取高度依赖人工设计特征耗时耗力的问题,提出一种基于BERT-BiLSTM-CRF模型的农业科技政策知识抽取方法。【方法】针对领域语料特征,提出一种新标注模式,对三元组直接建模,替代传统的联合抽取或分别建模,将实体关系识别转化为序列标注问题,实验选取政策文本共19,779个句子、376,721个字符,针对政策、行业等8类实体和引用、发布等10种关系进行识别。【结果】使用的BERT-BiLSTM-CRF模型在语料集上准确率为81.61%、召回率为85.34%、F1值为83.47%,实验结果表明,该方法能够有效抽取农业科技政策实体及关系,效果优于其他经典模型。

分类号: S126%TP391.1%TP18

  • 相关文献

[1]农业科技政策的发展与展望. 毛一剑,李春生,张小惠,孔宪琴,吴荣梁,张克勤. 2010

[2]国内外农业科技政策进展及我国新兴农业科技政策研究. 林青宁,毛世平. 2018

[3]科研院所视角下农业科技政策改革的若干思考. 陈香玉,龚晶,陈俊红. 2017

作者其他论文 更多>>