基于密度估计和VGG-Two的大豆籽粒快速计数方法

文献类型: 中文期刊

第一作者: 王莹

作者: 王莹;李越;武婷婷;孙石;王敏娟

作者机构:

关键词: 卷积神经网络;籽粒计数;籽粒图像;点标注;密度图;VGG-Two;育种

期刊名称: 智慧农业(中英文)

ISSN: 2096-8094

年卷期: 2021 年 04 期

页码: 111-122

摘要: 为快速准确计数大豆籽粒,提高大豆考种速度和育种水平,本研究提出了一种基于密度估计和VGG-Two (VGG-T)的大豆籽粒计数方法。首先针对大豆籽粒计数领域可用图像数据集缺乏的问题,提出了基于数字图像处理技术的预标注和人工修正标注相结合的快速目标点标注方法,加快建立带标注的公开可用大豆籽粒图像数据集。其次构建了适用于籽粒图像数据集的VGG-T网络计数模型,该模型基于VGG16,结合密度估计方法,实现从单一视角大豆籽粒图像中准确计数籽粒。最后采用自制的大豆籽粒数据集对VGG-T模型进行测试,分别对有无数据增强的计数准确性、不同网络的计数性能以及不同测试集的计数准确性进行了对比试验。试验结果表明,快速目标点标注方法标注37,563个大豆籽粒只需花费197 min,比普通人工标注节约了1592 min,减少约96%的人工工作量,大幅降低时间成本和人工成本;采用VGG-T模型计数,其评估指标在原图和补丁(patch)情况下的平均绝对误差分别为0.6和0.2,均方误差为0.6和0.3,准确性高于传统图像形态学操作以及ResNet18、ResNet18-T和VGG16网络。在包含不同密度大豆籽粒的测试集中,误差波动较小,仍具有优良的计数性能,同时与人工计数和数粒仪相比,计数11,350个大豆籽粒分别节省大约2.493h和0.203h,实现大豆籽粒的快速计数任务。

分类号: S565.1`TP391.41

  • 相关文献

[1]基于多列空洞卷积神经网络的麦穗计数方法研究. 刘云玲,张品戈,王千航,周睿琪,赵佳,肖永贵,马韫韬. 2021

[2]基于机器视觉的油菜籽计数系统开发与设计. 彭顺正,岳延滨,冯恩英,李莉婕,孙长青,赵泽英. 2020

[3]深度学习方法在农业领域的研究及应用. 马聪,张建华,陈学东,朱丹. 2020

[4]基于深度卷积神经网络的红树林物种无人机监测研究. 黄亦其,刘琪,赵建晔,黄文善,孙中宇,乔曦. 2020

[5]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

[6]小样本卷积神经网络井震映射反演. 安振芳,张进,张建中,邢磊,黄忠来. 2020

[7]采用卷积神经网络构建西北太平洋柔鱼渔场预报模型. 朱浩朋,伍玉梅,唐峰华,靳少非,裴凯洋,崔雪森. 2020

[8]基于SVM和CNN组合模型的黄瓜病斑叶片检测与识别. 王浩,王建春,李凤菊,钱春阳,张雪飞,徐义鑫,吕雄杰,杜彦芳,宋斌. 2020

[9]基于轻量化卷积神经网络的改进模型与验证. 李润龙,王运圣,徐识溥,刘勇. 2020

[10]基于VGG-16卷积神经网络的海水养殖病害诊断. 李海涛,王腾,王印庚. 2020

[11]基于卷积神经网络的水稻纹枯病图像识别. 刘婷婷,王婷,胡林. 2019

[12]基于U-Net的甘蔗提取方法. 董秀春,蒋怡,王思,李宗南,王昕. 2019

[13]卷积神经网络在农业病虫害识别中的应用. 张耀丽,许宁,宋裕民,孟庆山,侯旭,李虎. 2023

[14]融合语义特征与边缘特征的枸杞空间分布提取. 尹昊,张承明,李剑萍,韩颖娟,侯学会. 2022

[15]基于ResNet深度残差网络的白喉乌头检测. 梁俊欢,董峦,阿斯娅·曼力克,孙宗玖,魏鹏,马海燕,艾尼玩·艾买尔,阿仁,郑逢令. 2023

[16]一种基于深度学习的水稻种子分类方法. 王晓飞,刘维,巫浩翔,陈浩,张丽婷,潘朝阳,何秀英. 2024

[17]基于深度学习模型的种植结构复杂区农作物精细分类研究. 田甜,王迪,王珍,李会宾. 2022

[18]面向植物病害识别的卷积神经网络精简结构Distilled-MobileNet模型. 邱文杰,叶进,胡亮青,杨娟,李其利,莫贱友,易万茂. 2021

[19]卷积神经网络在农业遥感图像语义分割中的应用综述. 徐乐园,毛克彪,郭中华,葛非凡,赵瑞. 2024

[20]基于VGG-16卷积神经网络的水稻害虫智能识别研究. 钱蓉,孔娟娟,朱静波,张萌,董伟. 2020

作者其他论文 更多>>