Tomato SlSnRK1 Protein Interacts with and Phosphorylates beta C1, a Pathogenesis Protein Encoded by a Geminivirus beta-Satellite
文献类型: 外文期刊
第一作者: Shen, Qingtang
作者: Shen, Qingtang;Liu, Zhou;Song, Fengming;Zhou, Xueping;Xie, Qi;Hanley-Bowdoin, Linda
作者机构:
期刊名称:PLANT PHYSIOLOGY ( 影响因子:8.34; 五年影响因子:8.972 )
ISSN: 0032-0889
年卷期: 2011 年 157 卷 3 期
页码:
收录情况: SCI
摘要: The beta C1 protein of tomato yellow leaf curl China beta-satellite functions as a pathogenicity determinant. To better understand the molecular basis of beta C1 in pathogenicity, a yeast two-hybrid screen of a tomato (Solanum lycopersicum) cDNA library was carried out using beta C1 as bait. beta C1 interacted with a tomato SUCROSE-NONFERMENTING1-related kinase designated as SlSnRK1. Their interaction was confirmed using a bimolecular fluorescence complementation assay in Nicotiana benthamiana cells. Plants overexpressing SnRK1 were delayed for symptom appearance and contained lower levels of viral and satellite DNA, while plants silenced for SnRK1 expression developed symptoms earlier and accumulated higher levels of viral DNA. In vitro kinase assays showed that beta C1 is phosphorylated by SlSnRK1 mainly on serine at position 33 and threonine at position 78. Plants infected with beta C1 mutants containing phosphorylation-mimic aspartate residues in place of serine-33 and/or threonine-78 displayed delayed and attenuated symptoms and accumulated lower levels of viral DNA, while plants infected with phosphorylation-negative alanine mutants contained higher levels of viral DNA. These results suggested that the SlSnRK1 protein attenuates geminivirus infection by interacting with and phosphorylating the beta C1 protein.
分类号: Plant Sciences
- 相关文献
作者其他论文 更多>>
-
Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants
作者:Yu, Man;Kuang, Yongjie;Wang, Chenyang;Wu, Xuemei;Zhou, Xueping;Ren, Bin;Zhou, Huanbin;Yu, Man;Sun, Wenxian;Wu, Xuemei;Ren, Bin;Zhou, Huanbin;Wu, Xuemei;Zhang, Dawei;Li, Shaofang;Zhou, Xueping;Zhou, Huanbin
关键词:CRISPR; TadA variants; cytosine base editing; dual base editor; rice
-
Developing guanine base editors for G-to-T editing in rice
作者:Liu, Lang;Zhang, Zhongming;Wang, Chenyang;Yan, Fang;Zhou, Huanbin;Liu, Lang;Sun, Wenxian;Liu, Lang;Zhou, Huanbin;Zhang, Zhongming;Miao, Weiguo;Zhou, Xueping;Zhou, Huanbin
关键词:
-
Resistance to Planthoppers and Southern Rice Black-Streaked Dwarf Virus in Rice Germplasms
作者:Yu, Wenjuan;Xu, Zhi;Zhong, Xuelian;Ji, Hongli;Peng, Yunliang;He, Jiachun;Lai, Fengxiang;Fu, Qiang;Peng, Yunliang;Wu, Jianxiang;Zhou, Xueping;Zhang, Mei;Zhou, Xueping
关键词:Nilaparvata lugens; resistance; rice germplasm; Sogatella furcifera; Southern rice black-streaked dwarf virus
-
A Negative Feedback Loop Compromises NMD-Mediated Virus Restriction by the Autophagy Pathway in Plants
作者:Chen, Yalin;Jia, Mingxuan;Ge, Linhao;Li, Zhaolei;He, Hao;Zhou, Xueping;Li, Fangfang;Zhou, Xueping
关键词:autophagic degradation; nonsense mediated RNA decay; SMG7; UPF3; virus restriction
-
The C4 Protein of TbLCYnV Promotes SnRK1 β2 Degradation Via the Autophagy Pathway to Enhance Viral Infection in N. benthamiana
作者:Li, Xinquan;Zhao, Min;Yang, Wanyi;Zhou, Xueping;Xie, Yan;Zhou, Xueping
关键词:SnRK1; NbSnRK1 beta 2; TbLCYnV C4; interaction; degradation; autophagy pathway
-
Integrated proteomic, transcriptomic, and metabolomic profiling reveals that the gibberellin-abscisic acid hub runs flower development in the Chinese orchid Cymbidium sinense
作者:Ahmad, Sagheer;Lu, Chuqiao;Gao, Jie;Wei, Yonglu;Xie, Qi;Jin, Jianpeng;Zhu, Genfa;Yang, Fengxi;Zhu, Genfa;Yang, Fengxi
关键词:
-
The SUMOylation pathway regulates the pathogenicity of Fusarium oxysporum f. sp. niveum in watermelon through stabilizing the pH regulator FonPalC via SUMOylation
作者:Azizullah;Noman, Muhammad;Gao, Yizhou;Wang, Hui;Xiong, Xiaohui;Wang, Jiajing;Li, Dayong;Song, Fengming;Azizullah;Noman, Muhammad;Gao, Yizhou;Wang, Hui;Xiong, Xiaohui;Wang, Jiajing;Li, Dayong;Song, Fengming;Azizullah;Noman, Muhammad;Gao, Yizhou;Wang, Hui;Xiong, Xiaohui;Wang, Jiajing;Li, Dayong;Song, Fengming;Noman, Muhammad
关键词:FonSMT3; FonPalC; Fusarium oxysporum f. sp. niveum; Pathogenicity; SUMOylation; Watermelon Fusarium wilt