Amplified fragment length polymorphism analysis of Mythimna separata (Lepidoptera : Noctuidae) geographic and melanie laboratory populations in China

文献类型: 外文期刊

第一作者: Luo, Li-Zhi

作者: Luo, Li-Zhi;Zhang, Lei

作者机构:

关键词: Mythimna separata;AFLP;genetic diversity;gene flow;geographic population;GENETIC-VARIATION;LINKAGE MAP;AFLP;RESISTANCE;MARKERS;FLOW;DIVERSITY;MIGRATION;SELECTION;FLIGHT

期刊名称:JOURNAL OF ECONOMIC ENTOMOLOGY ( 影响因子:2.381; 五年影响因子:2.568 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Genetic diversity within and among three wild-type natural populations and one melanic laboratory population of Mythimna separata (Walker) (Lepidoptera: Noctuidae) were evaluated using amplified fragment length polymorphism (AFLP) analysis. Although extensive genetic diversity occurs among individuals from different geographic populations (P = 54.5%, h = 0.209, 1 = 0.305), the ma jority of the genetic diversity is within populations and not between populations (G(ST) = 0.172), indicating high gene flow (N-M = 2.403) and suggesting that M. separata in northern China are a part of a single large metapopulation. Genetic diversity in the natural populations was significantly higher than that in the melanic laboratory population (with P = 43.4% versus P = 25.9%, h = 0.173 versus h = 0.086, and I = 0.251 versus I = 0.127), suggesting that the melanic laboratory population is narrowly genetic-based and genetically uniform. Genetic similarities based on AFLP data were calculated, and cluster analysis was preformed to graphically display groupings between individuals and populations. Individuals from the same region were not grouped together in cluster analysis of three natural populations, whereas melanic individuals from laboratory population were grouped together very well. Four subpopulations were clustered into two broad groups. Melanic laboratory population became a single group, which had apparent differentiation from the other group in which three natural subpopulations were included. These results indicated that although high genetic variability existed among the individuals of natural populations, there was little genetic differentiation among three geographic populations that could be explained by the effects of the long distance migration of the oriental armyworm in China enhanced the level of gene flow. Influences of migration on the genetic polymorphism and differentiations that make a significant contribution to evolution in this insect are reviewed.

分类号: Q969.9

  • 相关文献

[1]Beet Webworm (Lepidoptera: Pyralidae) Migration in China: Evidence from Genetic Markers. Jiang, Xing-Fu,Cao, Wei-Ju,Zhang, Lei,Luo, Li-Zhi.

[2]A genetic linkage map of marine shrimp Penaeus (Fenneropenaeus) chinensis based on AFLP, SSR, and RAPD markers. Liu Bo,Wang Qingyin,Li Jian,Liu Ping,He Yuying,Liu Bo. 2010

[3]AFLP-based genetic linkage map of marine shrimp Penaeus (Fenneropenaeus) chinensis. Li, Zhaoxia,Li, Jian,Wang, Qingyin,He, Yuying,Liu, Ping. 2006

[4]CONSTRUCTION AND CHARACTERIZATION OF A TENTATIVE AMPLIFIED FRAGMENT LENGTH POLYMORPHISM-SIMPLE SEQUENCE REPEAT LINKAGE MAP OF LAMINARIA (LAMINARIALES, PHAEOPHYTA). Yang, Guanpin,Sun, Ying,Shi, Yuanyuan,Zhang, Linan,Guo, Shanshan,Li, Bingjun,Li, Xiaojie,Li, Zhiling,Cong, Yizhou,Zhao, Yushan,Wang, Wenquan.

[5]Molecular variation among Chinese and global germplasm in spring faba bean areas. Redden, R.,Zong, X.,Ren, J.,Guan, J.,Wang, S.,Zong, X.,Liu, Q.,Paull, J. G..

[6]Development of Pathogenicity and AFLP to Characterize Fusarium oxysporum f.sp momordicae Isolates from Bitter Gourd in China. Li, Qi-Qin,Yuan, Gao-Qing,Chen, Zhen-Dong,Huang, Ru-Kui,Wen, Jun-Li,Chen, Zhen-Dong,Huang, Ru-Kui.

[7]Association of AFLP and SCAR markers with common leafspot resistance in autotetraploid alfalfa (Medicago sativa). Wang, Y.,Bi, B.,Yuan, Q. H.,Li, X. L.,Gao, J. M.. 2012

[8]Genetic evidence of local adaptation of wheat yellow rust (Puccinia striiformis f. sp tritici) within France. Duan, X,Leconte, M,Hovmoller, MS,De Vallavieille-Pope, C.

[9]Autopolyploidy leads to rapid genomic changes in Arabidopsis thaliana. Liu, Shihong,Tian, Baoming,Wei, Fang.

[10]An assessment of the genetic diversity within Ganoderma strains with AFLP and ITS PCR-RFLP. Yang, Zhirong,Zheng, Linyong,Jia, Dinghong,Fei, Xiaofan,Luo, Xia. 2009

[11]Molecular diversity of Chinese Cucurbita moschata germplasm collections detected by AFLP markers. Chang, Zhijian,Zhan, Haixian,Wu, Junxin,Wu, Qingshan,Wu, Junxin,Chang, Zhijian,Xie, Shulian. 2011

[12]Genetic variation in the invasive process of Bursaphelenchus xylophilus (Aphelenchida : Aphelenchoididae) and its possible spread routes in China. Cheng, X-Y,Cheng, F-X,Xu, R-M,Xie, B-Y. 2008

[13]Analysis of the Germplasm Resources and Genetic Relationships among Cymbidium tortisepalum Cultivars Using Amplified Fragment Length Polymorphism Markers. Wu, X. Y.,Li, D. M.,Zhu, G. F.. 2013

[14]AFLP analysis on genetic diversity and population structure of small yellow croaker Larimichthys polyactis. Lin, Long Shan,Ying, Yi Ping,Xiao, Yong Shuang,Gao, Tian Xiang,Lin, Long Shan,Han, Zhi Qiang,Gao, Tian Xiang. 2009

[15]Genetic variation in wild and cultured populations of the pearl oyster Pinctada fucata from southern China. Yu, Da Hui,Chu, Ka Hou. 2006

[16]Genetic diversity of the Chinese traditional herb Blumea balsamifera (Asteraceae) based on AFLP markers. Pang, Y. X.,Zhang, Y. B.,Yu, J. B.,Zhu, M.,Chen, Y. Y.,Wang, W. Q.,Yuan, Y.. 2014

[17]Low genetic differentiation among widely separated populations of the pearl oyster Pinctada fucata as revealed by AFLP. Yu, DH,Chu, KH.

[18]Investigations on genetic diversity of northern snakehead (Channa argus) populations in China using amplified fragment length polymorphism (AFLP) markers. Zhou, Aiguo,Luo, Junzhi,Zou, Jixing,Zhuo, Xiaolei,Huang, Guiju,Yu, Dahui.

[19]Amplified Fragment Length Polymorphism Markers and Agronomic Traits Analysis Provide Strategies for Improvement of Bitter Gourd (Momordica charantia L.). Yang, Yan,Zhan, Yuanfeng,Liu, Weixia,Sun, Jihua. 2010

[20]Genetic evidence of local adaption and long distance migration in Blumeria graminis f. sp hordei populations from China. Zhu, Jinghuan,Shang, Yi,Hua, Wei,Wang, Junmei,Jia, Qiaojun,Yang, Jianming,Zhou, Yijun,Liu, Mengdao.

作者其他论文 更多>>