Effect of manganese spatial distribution in the soil profile on wheat growth in rice-wheat rotation

文献类型: 外文期刊

第一作者: Liu, XJ

作者: Liu, XJ;Li, L;Zhang, FS;Zeng, XZ;Tang, CX

作者机构:

关键词: Manganese;Rice-wheat rotation;Soil;Spatial distribution;Wheat;Iron;Nutrition;Subsoil;Mn

期刊名称:PLANT AND SOIL ( 影响因子:4.192; 五年影响因子:4.712 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Manganese (Mn) deficiency in wheat under rice (Oryza sativa L.) and wheat (Triticum aestivum L.) rotation is an important problem in most rice-growing areas in China. A field survey, field trials and a soil column experiment were conducted to determine the relationship between Mn leaching and distribution in soil profiles and paddy rice cultivation and the effects of Mn distribution in soil profiles on wheat growth and its response to Mn fertilization. At five field sites surveyed, total Mn and active Mn concentrations in the topsoil layers under rice-wheat rotations were only 42% and 11%, respectively, of those under systems without paddy rice. Both total and available Mn increased with soil depth in soils with rice-wheat rotations, showing significant spatial variability of Mn in the soil profile. Manganese leaching was the main pathway for Mn loss in coarse-textured soil with high pH, while excessive Mn uptake was the main pathway for Mn loss in clay-textured and acid soil. When Mn was deficient in the topsoil, sufficient Mn in the subsoil contributed to better growth and Mn nutrition of wheat but insufficient Mn in the subsoil resulted in Mn deficiency in wheat.

分类号: Q948

  • 相关文献

[1]Will elevated CO2 enhance mineral bioavailability in wetland ecosystems? Evidence from a rice ecosystem. Zhang, Weijian,Guo, Jia,Guo, Jia,Zhang, Weijian,Zhang, Mingqian,Zhang, Li,Bian, Xinmin.

[2]Manganese availability and microbial populations in the rhizosphere of wheat genotypes differing in tolerance to Mn deficiency. Marschner, P,Fu, QL,Rengel, Z.

[3]Spatial distribution and controlling factors of heavy metals contents in paddy soil and crop grains of rice-wheat cropping system along highway in East China. Zhang, Weijian,Feng, Jinfei,Zhao, Jian,Bian, Xinmin,Zhang, Weijian.

[4]Characterization of natural variation for zinc, iron and manganese accumulation and zinc exposure response in Brassica rapa L.. Wu, Jian,Schat, Henk,Sun, Rifei,Koornneef, Maarten,Wang, Xiaowu,Aarts, Mark G. M..

[5]The combination of subsoil and the incorporation of corn stover affect physicochemical properties of soil and corn yield in semi-arid China. Bai, Wei,Bai, Wei,Sun, Zhanxiang,Zheng, Jiaming,Liu, Yang,Hou, Zhiyan,Feng, Liangshan,Qian, Cai,Yang, Ning,Chen, Feng,Zhe, Zhang.

[6]Effect of wheat pearling on flour phytase activity, phytic acid, iron, and zinc content. Liu, Zhenghui,Wang, Haiyan,Wang, Xu-E,Xu, Hongyan,Chen, Peidu,Liu, Dajun,Gao, Derong,Zhang, Guoping. 2008

[7]Enantioselective separation of the carfentrazone-ethyl enantiomers in soil, water and wheat by HPLC. Dong, Fengshou,Liu, Xingang,Xu, Jun,Chen, Wuying,Cheng, Li,Ning, Ping,Li, Jing,Zheng, Yongquan,Wang, Yunhao.

[8]The dissipation rates of myclobutanil and residue analysis in wheat and soil using gas chromatography-ion trap mass spectrometry. Dong, Fengshou,Wang, Xu,Zheng, Yongquan.

[9]Rapid residue analysis of four triazolopyrimidine herbicides in soil, water, and wheat by ultra-performance liquid chromatography coupled to tandem mass spectrometry. Liu, Xingang,Xu, Jun,Li, Yuanbo,Dong, Fengshou,Li, Jing,Zheng, Yongquan,Song, Wenchen.

[10]The effect of increased atmospheric carbon dioxide concentration on emissions of nitrous oxide, carbon dioxide and methane from a wheat field in a semi-arid environment in northern China. Lam, Shu Kee,Norton, Rob,Chen, Deli,Lin, Erda,Norton, Rob.

[11]Enantioselective Degradation of Tebuconazole in Wheat and Soil under Open Field Conditions. Ye, Xiaolan,Peng, Anguo,Peng, Anguo,Qiu, Jing,Chai, Tingting,Zhao, Hualin,Ge, Xinghua. 2013

[12]Dissipation and Residues of Flutriafol in Wheat and Soil Under Field Conditions. Yu, Pingzhong,Liu, Fengmao,Yu, Pingzhong,Jia, Chunhong,Song, Wencheng. 2012

[13]Stereoselective transformation of triadimefon to metabolite triadimenol in wheat and soil under field conditions. Liang, Hongwu,Qiu, Jing,Yang, Shuming,Li, Li,Li, Wei,Liang, Hongwu,Zhou, Zhiqiang,Qiu, Lihong.

[14]Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Huang, Ni,Niu, Zheng,Zhan, Yulin,Xu, Shiguang,Wu, Chaoyang,Gao, Shuai,Hou, Xuehui,Cai, Dewen,Huang, Ni,Xu, Shiguang,Hou, Xuehui,Cai, Dewen,Tappert, Michelle C.,Huang, Wenjiang.

[15]Manganese tolerance and accumulation in six Mn hyperaccumulators or accumulators. Tang, Xiumei,Gong, Chunfeng,Xu, GenDi,Liu, Peng,Tang, Xiumei,Tang, Xiumei.

[16]Direct determination of Cu, Mn and Pb in wine and drink by GFAAS. Bian, JS,Shan, F,Li, YQ. 2000

[17]Storage and spatial patterns of organic carbon of soil profiles in Guangdong Province, China. Zhang, Huihua,Chen, Junjian,Wu, Zhifeng,Li, Dingqiang,Wu, Zhifeng,Zhu, Li.

[18]A Field Study on Effects of Nitrogen Fertilization Modes on Nutrient Uptake, Crop Yield and Soil Biological Properties in Rice-Wheat Rotation System. Guan Guan,Tu Shu-xin,Yang Jun-cheng,Zhang Jian-feng,Yang Li. 2011

[19]The effects of slow-release nitrogen fertilization models on soil biological properties in rice-wheat cropping system. Guan, Guan,Tu, Shuxin,Yang, Junchen,Zhang, Jianfeng,Yang, Li. 2010

[20]Maintaining yields and reducing nitrogen loss in rice-wheat rotation system in Taihu Lake region with proper fertilizer management. Xue, Lihong,Yu, Yingliang,Yang, Linzhang. 2014

作者其他论文 更多>>