Characterization of Ionotropic Receptor Gene EonuIR25a in the Tea Green Leafhopper, Empoasca onukii Matsuda

文献类型: 外文期刊

第一作者: Zhang, Ruirui

作者: Zhang, Ruirui;Lun, Xiaoyue;Zhang, Yu;Zhao, Yunhe;Zhang, Zhengqun;Xu, Xiuxiu

作者机构:

关键词: Empoasca onukii Matsuda; EonuIR25a; plant volatiles; RNA interference; olfactory system

期刊名称:PLANTS-BASEL ( 影响因子:4.5; 五年影响因子:4.8 )

ISSN:

年卷期: 2023 年 12 卷 10 期

页码:

收录情况: SCI

摘要: Ionotropic receptors (IRs) play a central role in detecting chemosensory information from the environment and guiding insect behaviors and are potential target genes for pest control. Empoasca onukii Matsuda is a major pest of the tea plant Camellia sinensis (L.) O. Ktze, and seriously influences tea yields and quality. In this study, the ionotropic receptor gene EonuIR25a in E. onukii was cloned, and the expression pattern of EonuIR25a was detected in various tissues. Behavioral responses of E. onukii to volatile compounds emitted by tea plants were determined using olfactometer bioassay and field trials. To further explore the function of EonuIR25a in olfactory recognition of compounds, RNA interference (RNAi) of EonuIR25a was carried out by ingestion of in vitro synthesized dsRNAs. The coding sequence (CDS) length of EonuIR25a was 1266 bp and it encoded a 48.87 kD protein. EonuIR25a was enriched in the antennae of E. onukii. E. onukii was more significantly attracted by 1-phenylethanol at a concentration of 100 mu L/mL. Feeding with dsEonuIR25a significantly downregulated the expression level of EonuIR25a, after 3 h of treatment, which disturbed the behavioral responses of E. onukii to 1-phenylethanol at a concentration of 100 mu L/mL. The response rate of E. onukii to 1-phenylethanol was significantly decreased after dsEonuIR25a treatment for 12 h. In summary, the ionotropic receptor gene EonuIR25a was highly expressed in the antennae of E. onukii and was involved in olfactory recognition of the tea plant volatile 1-phenylethanol. The present study may help us to use the ionotropic receptor gene as a target for the behavioral manipulation of E. onukii in the future.

分类号:

  • 相关文献
作者其他论文 更多>>