AGTML: A novel approach to land cover classification by integrating automatic generation of training samples and machine learning algorithms on Google Earth Engine
文献类型: 外文期刊
第一作者: Cui, Yanglin
作者: Cui, Yanglin;Zhou, Yanbing;Zhao, Chunjiang;Pan, Yuchun;Sun, Qian;Gu, Xiaohe;Cui, Yanglin;Yang, Gaoxiang;Sun, Qian
作者机构:
关键词: Land cover mapping; Landsat 8; Machine learning; Optimal focal radii; Training sample generation
期刊名称:ECOLOGICAL INDICATORS ( 影响因子:6.9; 五年影响因子:6.6 )
ISSN: 1470-160X
年卷期: 2023 年 154 卷
页码:
收录情况: SCI
摘要: The timely, accurate, and automatic acquisition of land cover (LC) information is a prerequisite for detecting LC dynamics and performing ecological analyses. Cloud computing platforms, such as the Google Earth Engine, have substantially improved the efficiency and scale of LC classification. However, the lack of sufficient and representative training samples hinders automatic and accurate LC classification. In this study, we propose a new approach that integrates the automatic generation of training samples and machine learning algorithms (AGTML) for LC classification in Heilongjiang Province, China. After optimal focal radii were determined for different LC types using Landsat 8 based on focal statistics and unique phenology. Then target training samples were automatically generated based on the improved distance measure SED (a composite of Spectral angle distance (SAD) and Euclidean distance (ED)). Furthermore, LC classification was performed using four feature combinations and three machine learning algorithms. According to independent validation data, the automatically generated training samples demonstrated good representativeness and stability among all three classifiers, with an overall accuracy (OA) of classification higher than 86%, and showed high consistency in the landscape pattern of classification. RF yielded the highest classification accuracy (92.99% OA). AGTML outperformed GLCFCS30 in identifying large fragmentation and small patch regions in the landscape types. The AGTML approach was subsequently applied to the Guanzhong Plain using different satellite imagery. Results were consistent and accurate (>96.50% OA), demonstrating that the AGTML approach can be applied to various regions and sensors, and has immense potential for automated LC classification across regional and global scales.
分类号:
- 相关文献
作者其他论文 更多>>
-
Quantitative Determination of Cd Using Energy Dispersion XRF Based on Gaussian Mixture Clustering-Multilevel Model Recalibration
作者:Gao, Yunbing;Zhao, Yanan;Pan, Yuchun;Sun, Wenbin;Zhao, Xiande;Liu, Xiaoyang;Li, Xue;Mao, Xuefei
关键词:
-
Estimation of grain filling rate and thousand-grain weight of winter wheat ( Triticum aestivum L. ) using UAV-based multispectral images
作者:Zhang, Baoyuan;Dai, Menglei;Sun, Qian;Qu, Xuzhou;Zhang, Mingzheng;Gu, Xiaohe;Zhang, Baoyuan;Gu, Limin;Dai, Menglei;Bao, Xiaoyuan;Zhen, Wenchao;Zhen, Wenchao;Zhen, Wenchao;Zhang, Baoyuan;Liu, Xingyu;Fan, Chengzhi
关键词:Grain filling rate; Grain weight; UAV; Winter wheat; Vegetation index
-
Research on methods for estimating reference crop evapotranspiration under incomplete meteorological indicators
作者:Sun, Xuguang;Zhang, Baoyuan;Gao, Ruocheng;Gu, Limin;Zhen, Wenchao;Sun, Xuguang;Zhang, Baoyuan;Dai, Menglei;Ma, Kai;Gu, Xiaohe;Dai, Menglei;Jing, Cuijiao;Gu, Limin;Zhen, Wenchao;Gu, Shubo;Gu, Shubo;Zhen, Wenchao
关键词:reference crop evapotranspiration; Penman-Monteith; FAO-24 radiation; meteorological indicators; Bayesian estimation
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine