Identification of an aminopeptidase from the skeletal muscle of grass carp (Ctenopharyngodon idellus)

文献类型: 外文期刊

第一作者: Liu, Bing-Xin

作者: Liu, Bing-Xin;Sun, Le-Chang;Su, Wen-Jin;Cao, Min-Jie;Zhou, Li-Gen;Hara, Kenji

作者机构:

关键词: Ctenopharyngodon idella;purification.;Aminopeptidase;Characterization;Internet resource.

期刊名称:FISH PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:2.794; 五年影响因子:2.876 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Aminopeptidases play important roles in turnover of proteins, metabolism of hormones and neurotransmission, cell maturation and immunological regulations. In the present study, an aminopeptidase was purified to homogeneity from the skeletal muscle of grass carp by ammonium sulfate fractionation and sequential chromatographic steps, including DEAE-Sephacel, Sephacryl S-200, hydroxyapatite and Phenyl-Sepharose. The purified enzyme revealed a molecular mass of approximately 105 kDa both on SDS-PAGE and on gel filtration of Superdex 200. The enzymatic activity toward synthetic substrates was optimal at 40pC and pH 7.0-7.5. Metal-chelating agents such as EDTA and EGTA effectively inhibited the enzyme activity while inhibitors to serine, asparatic and cysteine proteinases did not show much effect, suggesting its belonging to metalloproteinase family. A specific aminopeptidase inhibitor bestatin was most effective in suppressing the enzymatic activity and performed in a competitive fashion. The enzymatic activity was slightly enhanced by metal ions of Mgpo and Mnpo while inhibited to different extents by Copo, Cupo, Znpo and Capo. Sulfhydryl reagent was necessary to maintain its activity. Purified enzyme demonstrated amidolytic activity most effectively against synthetic aminopeptidase substrate Leu-methylcoumarylamide (MCA) while N-terminal-blocked substrates and myofibrillar proteins were not hydrolyzed. The enzyme purified in the present study was quite possibly a leucine aminopeptidase (LAP) and functions during muscular protein metabolism.

分类号: S9

  • 相关文献

[1]Molecular characterization and association analysis of porcine adipose triglyceride lipase (PNPLA2) gene. Dai, Li He,Xiong, Yuan Zhu,Jiang, Si Wen,Dai, Li He,Chen, Jun Feng.

[2]A New Aminopeptidase from the Keratin-Degrading Strain Streptomyces fradiae var. k11. Wu, Bo,Shi, Pengjun,Wang, Yaru,Meng, Kun,Bai, Yingguo,Luo, Huiying,Yang, Peilong,Zhou, Zhigang,Yao, Bin,Li, Jiang. 2010

[3]Effects of a protease inhibitor protein from Xenorhabdus bovienii on physiology of pea aphid (Acyrthosiphon pisum). Zeng, Fanrong,Zhang, Heqing,Jin, Danjuan,Dong, Shuanglin. 2014

[4]Characterization of microRNAs from sheep (Ovis aries) using computational and experimental analyses. Sheng, Xihui,Wei, Caihong,Liu, Tao,Zhang, Li,Du, Lixin,Sheng, Xihui,Song, Xuemei,Yu, Yan,Niu, Lili,Li, Shangang,Li, Hongbin.

[5]Grass carp (Ctenopharyngodon idella) TRAF6 and TAK1: Molecular cloning and expression analysis after Ichthyophthirius multifiliis infection. Zhao, Fei,Li, Yan-Wei,Luo, Xiao-Chun,Li, An-Xing,Zhao, Fei,Pan, Hou-Jun,Wu, Shu-Qin,Shi, Cun-Bin. 2013

[6]Effects of processing method and dietary lysine levels on growth performance, feed conversion ratio and body composition of grass carp, Ctenopharyngodon idella. Gan, Lian,Gan, Lian,Liu, Yong-Jian,Tian, Li-Xia,Liu, Fu-Jia,Yang, Hui-Jun,Chen, Yong-Jun,Liang, Gui-Yin,Yue, Yi-Rong. 2015

[7]Effects of different dietary wheat starch levels on growth, feed efficiency and digestibility in grass carp (Ctenopharyngodon idella). Tian, Li Xia,Liu, Yong Jian,Yang, Hui Jun,Liang, Gui Ying,Niu, Jin. 2012

[8]Dietary magnesium requirements of juvenile grass carp, Ctenopharyngodon idella. Wang, F-B,Luo, L.,Lin, S-M,Li, Y.,Chen, S.,Wang, Y-G,Wen, H.,Hu, C-J. 2011

[9]Effects of dietary reduced glutathione on growth performance, non-specific immunity, antioxidant capacity and expression levels of IGF-I and HSP70 mRNA of grass carp (Ctenopharyngodon idella). Ming, Jian-Hua,Ye, Jin-Yun,Zhang, Yi-Xiang,Ming, Jian-Hua,Xu, Pao,Xie, Jun.

[10]Tlr22 structure and expression characteristic of barbel chub, Squaliobarbus curriculus provides insights into antiviral immunity against infection with grass carp reovirus. Wang, Rong-hua,Li, Wei,Liu, Qiao-lin,Zeng, Ling-bing,Xiao, Tiao-yi,Fan, Yu-ding,Zeng, Ling-bing.

[11]The influence of feeding rate on growth, feed efficiency and body composition of juvenile grass carp (Ctenopharyngodon idella). Du, Zhen-Yu,Liu, Yong-Jian,Tian, Li-Xia,Ge, Jian-Guo,Cao, Jun-Ming,Liang, Gui-Ying. 2006

[12]Elimination kinetics of eugenol in grass carp in a simulated transportation setting. Zhao, Dong-Hao,Ke, Chang-Liang,Liu, Qi,Wang, Xu-Feng,Wang, Qiang,Li, Liu-Dong,Zhao, Dong-Hao,Ke, Chang-Liang,Liu, Qi,Wang, Xu-Feng,Wang, Qiang,Li, Liu-Dong,Zhao, Dong-Hao,Ke, Chang-Liang,Liu, Qi,Wang, Xu-Feng,Wang, Qiang,Li, Liu-Dong,Zhao, Dong-Hao,Ke, Chang-Liang,Liu, Qi,Wang, Xu-Feng,Wang, Qiang,Li, Liu-Dong. 2017

[13]Effect of Dietary Alanine and Glycine Supplementation on Growth Performance, Body Composition and Apparent Nutrient Digestibility of Juvenile Grass Carp (Ctenopharyngodon idella). Jin, Yan,Li, Sheng-Fa,Cheng, Jia-Hua,Jin, Yan,Li, Sheng-Fa,Cheng, Jia-Hua,Liu, Fu-Jia,Tian, Li-Xia,Liu, Yong-Jian. 2016

[14]Molecular cloning of type I collagen cDNA and nutritional regulation of type I collagen mRNA expression in grass carp. Yu, E. M.,Liu, B. H.,Wang, G. J.,Yu, D. G.,Xie, J.,Xia, Y.,Gong, W. B.,Wang, H. H.,Li, Z. F.,Wei, N..

[15]Genetic parameter estimates for growth of grass carp, Ctenopharyngodon idella, at 10 and 18 months of age. Fu, Jianjun,Shen, Yubang,Xu, Xiaoyan,Li, Jiale,Fu, Jianjun,Li, Jiale.

[16]Effects of dissolved oxygen and dietary lysine levels on growth performance, feed conversion ratio and body composition of grass carp, Ctenopharyngodon idella. Gan, L.,Gan, L.,Liu, Y. -J.,Tian, L. -X.,Yue, Y. -R.,Yang, H. -J.,Liu, F. -J.,Chen, Y. -J.,Liang, G. -Y.,Yue, Y. -R..

[17]No evidence of persistent effects of continuously planted transgenic insect-resistant cotton on soil microorganisms. Xiaogang Li,Biao Liu,Jinjie Cui,Doudou Liu,Shuai Ding,Ben Gilna,Junyu Luo,Zhixiang Fang,Wei Cao,Zhengmin Han.

[18]Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Zhuang, Jing,Yao, Quan-Hong,Sun, Chao-Cai,Zhou, Xi-Rong,Xiong, Ai-Sheng,Zhuang, Jing,Zhang, Jian,Chen, Jian-Min,Xiong, Fei.

[19]Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier. Sun, Wanchun,Zhang, Jie,Fan, Qionghua,Xue, Gaofeng,Li, Zhaojun,Liang, Yongchao,Sun, Wanchun.

[20]Toxicity and accumulation of copper and nickel in maize plants cropped on calcareous and acidic field soils. Guo, X. Y.,Zuo, Y. B.,Wang, B. R.,Li, J. M.,Ma, Y. B..

作者其他论文 更多>>