Simultaneously improving yield under drought stress and non-stress conditions: a case study of rice (Oryza sativa L.)

文献类型: 外文期刊

第一作者: Guan, Y. S.

作者: Guan, Y. S.;Liu, S. H.;Xu, J. L.;Wang, W. S.;Zhu, L. H.;Li, Z. K.;Guan, Y. S.;Serraj, R.;Liu, S. H.;Xu, J. L.;Ali, J.;Wang, W. S.;Venus, E.;Li, Z. K.

作者机构:

关键词: crop yield;drought stress;biomass reduction;genetic control;reproductive stage;grain weight;vegetative stage;spikelet fertility;dehydration avoidance

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Drought is the most important factor limiting rice productivity in the rainfed areas of Asia. In this study, 48 pyramiding lines (PLs) and their recurrent parent, IR64, were evaluated over two years for their yield performances and related traits under severe drought stress at the reproductive stage (RS), the vegetative stage (VS) and irrigated control in order to understand the relationship between drought tolerance (DT) and yield potential (YP) in rice and their underlying mechanisms. When compared with IR64, all PLs had significantly improved DT to RS and 36 PLs also had significantly improved DT to VS. In addition, 17 PLs had higher YP than IR64 and the remaining 31 PLs had a similar YP IR64 under irrigated conditions. Detailed characterization of the PLs revealed three possible mechanisms that functioned together to contribute to their improved DT. The most important mechanism was dehydration avoidance (DA), characterized by significantly higher growth rate and biomass of all PLs than IR64 under stress and no reduction in biomass under control conditions. The second mechanism was efficient partitioning, characterized by improved harvest index in all PLs compared with IR64, resulting primarily from heavier grain weight and/or higher spikelet fertility under control conditions, which was the major constituent of the improved YP in the 17 best performing PLs. Drought escape (DE) by accelerated heading under drought was the third mechanism that contributed to DT of the PLs to RS. The considerable variation in the measured traits among the PLs with similar levels of DT and YP implies the complex genetic control of the mechanisms for DT/YP and offers opportunities to improve DT and YP further by fine-tuning of a small number of QTLs segregating among the PLs using MAS. Finally, our results indicate that selection for yield plus some secondary traits under appropriate type(s) of stress and non-stress conditions similar to the target environments are critically important for improving both DT and YP in rice.

分类号: Q94

  • 相关文献

[1]Rice growth parameters retrieval in Central China in a complex rice cropping system using multi-temporal and quad polarization Radarsat-2 data. Zhang, Xiaoqian,Wang, Fei,Zhao, Hu,Shen, Kejian,Pei, Zhiyuan,Zhang, Pengbin,Zhang, Pengbin,Lou, Jing. 2016

[2]Improvement of bacterial blight resistance of hybrid rice in China using the Xa23 gene derived from wild rice (Oryza rufipogon). Zhou, Yong-Li,Uzokwe, Veronica N. E.,Cheng, Li-Rui,Wang, Lei,Chen, Kai,Gao, Xiao-Qing,Sun, Yong,Zhu, Ling-Hua,Zhang, Qi,Xu, Jian-Long,Li, Zhi-Kang,Zhang, Cong-He,Chen, Jin-Jie,Ali, Jauhar,Li, Zhi-Kang.

[3]Effects of high temperature at anthesis on spikelet fertility and grain weight in relation to floral positions within a panicle of rice (Oryza sativa L.). Cao, Zhen-Zhen,Zhao, Qian,Wei, Ke-Su,Zaidi, Syed-Hassan-Raza,Zhou, Wei-Jun,Cheng, Fang-Min,Cao, Zhen-Zhen,Huang, Fu-Deng,Zhou, Wei-Jun,Cheng, Fang-Min.

[4]LAX PANICLE2 of Rice Encodes a Novel Nuclear Protein and Regulates the Formation of Axillary Meristems. Hattori, Susumu,Omae, Minami,Shimizu-Sato, Sae,Sato, Yutaka,Tabuchi, Hiroaki,Zhang, Yu,Xie, He,Fang, Xiaohua,Chen, Fan,Oikawa, Tetsuo,Qian, Qian,Nishimura, Minoru,Kitano, Hidemi,Yoshida, Hitoshi,Kyozuka, Junko,Sato, Yutaka.

[5]Agronomic improvements through the genetic and physiological regulation of nitrogen uptake in wheat (Triticum aestivum L.). Kong, Lingan,Wang, Fahong,Si, Jisheng,Lopez-bellido, Luis,Si, Jisheng,Maria Garcia-mina, Jose,Si, Jisheng. 2013

[6]Identification and validation of a major QTL conferring crown rot resistance in hexaploid wheat. Ma, J.,Li, H. B.,Zhang, C. Y.,Yang, X. M.,Liu, Y. X.,Liu, C. J.,Ma, J.,Yan, G. J.,Liu, C. J.,Yang, X. M.,Liu, Y. X..

[7]Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. Ji, Kuixian,Wang, Yangyang,Shen, Shihua,Chen, Hui,Sun, Weining,Lou, Qiaojun,Mei, Hanwei,Ji, Kuixian,Wang, Yangyang. 2012

[8]Transcriptome characterization and differential expression analysis of cold-responsive genes in young spikes of common wheat. Zhang, Shujuan,Song, Guoqi,Gao, Jie,Li, Yulian,Guo, Dong,Fan, Qingqi,Sui, Xinxia,Chu, Xiusheng,Huang, Chengyan,Liu, Jianjun,Li, Genying,Zhang, Shujuan,Song, Guoqi,Gao, Jie,Li, Yulian,Guo, Dong,Fan, Qingqi,Sui, Xinxia,Chu, Xiusheng,Huang, Chengyan,Liu, Jianjun,Li, Genying,Zhang, Shujuan,Song, Guoqi,Gao, Jie,Li, Yulian,Guo, Dong,Fan, Qingqi,Sui, Xinxia,Chu, Xiusheng,Huang, Chengyan,Liu, Jianjun,Li, Genying.

[9]Effects of Low Temperature Stress on Spikelet-Related Parameters during Anthesis in Indica-Japonica Hybrid Rice. Zeng, Yanhua,Pan, Xiaohua,Zeng, Yanhua,Zhang, Yuping,Xiang, Jing,Zhu, Defeng,Uphoff, Norman T.. 2017

[10]Pollen Semi-Sterility1 Encodes a Kinesin-1-Like Protein Important for Male Meiosis, Anther Dehiscence, and Fertility in Rice. Zhou, Shirong,Wang, Yang,Li, Wanchang,Zhao, Zhigang,Ren, Yulong,Wang, Yong,Jiang, Ling,Liu, Linglong,Wan, Jianmin,Zhou, Shirong,Gu, Suhai,Lin, Qibing,Wang, Dan,Su, Ning,Zhang, Xin,Cheng, Zhijun,Lei, Cailin,Wang, Jiulin,Guo, Xiuping,Wu, Fuqing,Wang, Haiyang,Wan, Jianmin,Ikehashi, Hiroshi.

[11]OsEF3, a homologous gene of Arabidopsis ELF3, has pleiotropic effects in rice. Fu, C.,Yang, X. O.,Chen, W.,Ma, Y.,Hu, J.,Li, S.,Fu, C.,Yang, X. O.,Chen, W.,Ma, Y.,Hu, J.,Li, S.,Fu, C.,Chen, X.. 2009

[12]Association Mapping of Grain Weight, Length and Width in Barley (Hordeum vulgare) Breeding Germplasm. Liu, X.,Ma, L.,Feng, Z.,Lai, Yunping,Yu, Y.,Wan, H.,Zhang, Z.,Wang, L.,Leng, Y.,Yang, W.,Ma, L.. 2017

[13]TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. Zhang, Lei,Zhao, Yong-Liang,Gao, Li-Feng,Zhao, Guang-Yao,Zhou, Rong-Hua,Jia, Ji-Zeng,Zhang, Lei,Zhang, Bao-Shi.

[14]Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice. Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Yu, Si-Bin,Zhang, Hong-Wei,Yu, Si-Bin. 2016

[15]Nighttime Warming Will Increase Winter Wheat Yield Through Improving Plant Development and Grain Growth in North China. Chen, Jin,Tian, Yunlu,Zhang, Xin,Zhang, Weijian,Zhang, Xin,Zheng, Chengyan,Song, Zhenwei,Deng, Aixin,Zhang, Weijian. 2014

[16]Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Wu, Xinyi,Cheng, Ruiru,Xue, Shulin,Kong, Zhongxin,Wan, Hongshen,Li, Guoqiang,Huang, Yulong,Jia, Haiyan,Zhang, Lixia,Ma, Zhengqiang,Jia, Jizeng. 2014

[17]Dissection of qTGW1.2 to three QTLs for grain weight and grain size in rice (Oryza sativa L.). Wang, Lin-Lin,Chen, Yu-Yu,Guo, Liang,Zhang, Hong-Wei,Fan, Ye-Yang,Zhuang, Jie-Yun,Wang, Lin-Lin,Chen, Yu-Yu,Guo, Liang,Zhang, Hong-Wei,Fan, Ye-Yang,Zhuang, Jie-Yun.

[18]Homologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2. Qin, Lin,Hao, Chenyang,Hou, Jian,Wang, Yuquan,Li, Tian,Wang, Lanfen,Zhang, Xueyong,Qin, Lin,Ma, Zhengqiang,Qin, Lin,Ma, Zhengqiang. 2014

[19]Genetic Effects of Background-Independent Loci for Grain Weight and Shape Identified using Advanced Reciprocal Introgression Lines from Lemont x Teqing in Rice. Zheng, T. Q.,Zhu, L. H.,Sun, Y.,Zhai, H. Q.,Xu, Z. J.,Li, Z. K.,Wang, Y.,Xu, Z. J.,Ali, A. J.,Li, Z. K.,Mei, H. W..

[20]OsAGSW1, an ABC1-like kinase gene, is involved in the regulation of grain size and weight in rice. Li, Tao,Jiang, Jieming,Zhang, Shengchun,Shu, Haoran,Wang, Yaqin,Lai, Jianbin,Du, Jinju,Yang, Chengwei,Li, Tao.

作者其他论文 更多>>